These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 18213454)

  • 1. Canopy assessment of biochemical features by ground-based hyperspectral data for an invasive species, giant reed (Arundo donax).
    Ge S; Carruthers RI; Spencer DF; Yu Q
    Environ Monit Assess; 2008 Dec; 147(1-3):271-8. PubMed ID: 18213454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of leaf nitrogen content from spectral characteristics of rice canopy.
    Yang CM
    ScientificWorldJournal; 2001 Dec; 1 Suppl 2():81-9. PubMed ID: 12805736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ hyperspectral data analysis for pigment content estimation of rice leaves.
    Cheng Q; Huang JF; Wang XZ; Wang RC
    J Zhejiang Univ Sci; 2003; 4(6):727-33. PubMed ID: 14566990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Estimation of chlorophyll content in apple tree canopy based on hyperspectral parameters].
    Pan B; Zhao GX; Zhu XC; Liu HT; Liang S; Tian DD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Aug; 33(8):2203-6. PubMed ID: 24159876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data.
    Zhou K; Deng X; Yao X; Tian Y; Cao W; Zhu Y; Ustin SL; Cheng T
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Monitoring models of the plant nitrogen content based on cotton canopy hyperspectral reflectance].
    Wang KR; Pan WC; Li SK; Chen B; Xiao H; Wang FY; Chen JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jul; 31(7):1868-72. PubMed ID: 21942041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inversion modeling of japonica rice canopy chlorophyll content with UAV hyperspectral remote sensing.
    Cao Y; Jiang K; Wu J; Yu F; Du W; Xu T
    PLoS One; 2020; 15(9):e0238530. PubMed ID: 32915830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The canopy and leaf spectral characteristics and nutrition diagnosis of tomato in greenhouse].
    Zhao RJ; Li MZ; Yang C; Yang W; Sun H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):3103-6. PubMed ID: 21284192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring ratio of carbon to nitrogen (C/N) in wheat and barley leaves by using spectral slope features with branch-and-bound algorithm.
    Xu X; Yang G; Yang X; Li Z; Feng H; Xu B; Zhao X
    Sci Rep; 2018 Jul; 8(1):10034. PubMed ID: 29968798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Estimation and Visualization of Nitrogen Content in Citrus Canopy Based on Two Band Vegetation Index (TBVI)].
    Wang QN; Ye XJ; Li JM; Xiao YZ; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):715-8. PubMed ID: 26117885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid prediction of chlorophylls and carotenoids content in tea leaves under different levels of nitrogen application based on hyperspectral imaging.
    Wang Y; Hu X; Jin G; Hou Z; Ning J; Zhang Z
    J Sci Food Agric; 2019 Mar; 99(4):1997-2004. PubMed ID: 30298617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Predicting nitrogen concentrations from hyperspectral reflectance at hyperspectral reflectance at leaf and canopy for rape].
    Wang Y; Huang JF; Wang FM; Liu ZY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Feb; 28(2):273-7. PubMed ID: 18479002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Spectral characteristics of corn under different nitrogen treatments].
    Sun H; Li MZ; Zhang YE; Zhao Y; Wang HH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):715-9. PubMed ID: 20496694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating sensitivity of hyperspectral indices for estimating mangrove chlorophyll in Middle Andaman Island, India.
    George R; Padalia H; Sinha SK; Kumar AS
    Environ Monit Assess; 2020 Jan; 191(Suppl 3):785. PubMed ID: 31989307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.
    Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral analysis of coniferous foliage and possible links to soil chemistry: are spectral chlorophyll indices related to forest floor dissolved organic C and N?
    Albrechtova J; Seidl Z; Aitkenhead-Peterson J; Lhotáková Z; Rock BN; Alexander JE; Malenovský Z; McDowell WH
    Sci Total Environ; 2008 Oct; 404(2-3):424-32. PubMed ID: 18191443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status].
    Tan CW; Zhou QB; Qi L; Zhuang HY
    Ying Yong Sheng Tai Xue Bao; 2008 Jun; 19(6):1261-8. PubMed ID: 18808018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The prediction model of nitrogen nutrition in cotton canopy leaves based on hyperspectral visible-near infrared band feature fusion.
    Li L; Li F; Liu A; Wang X
    Biotechnol J; 2023 Aug; 18(8):e2200623. PubMed ID: 37144795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [An Analysis of the Spectrums between Different Canopy Structures Based on Hyperion Hyperspectral Data in a Temperate Forest of Northeast China].
    Yu QZ; Wang SQ; Huang K; Zhou L; Chen DC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1980-5. PubMed ID: 26717763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Estimation of canopy chlorophyll content using hyperspectral data].
    Dong JJ; Wang L; Niu Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3003-6. PubMed ID: 20101973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.