BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 18213512)

  • 1. Identification of residues surrounding the active site of type A botulinum neurotoxin important for substrate recognition and catalytic activity.
    Ahmed SA; Olson MA; Ludivico ML; Gilsdorf J; Smith LA
    Protein J; 2008 Apr; 27(3):151-62. PubMed ID: 18213512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light chain separated from the rest of the type a botulinum neurotoxin molecule is the most catalytically active form.
    Gul N; Smith LA; Ahmed SA
    PLoS One; 2010 Sep; 5(9):e12872. PubMed ID: 20877571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arg(362) and Tyr(365) of the botulinum neurotoxin type a light chain are involved in transition state stabilization.
    Binz T; Bade S; Rummel A; Kollewe A; Alves J
    Biochemistry; 2002 Feb; 41(6):1717-23. PubMed ID: 11827515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the mechanistic role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain.
    Li L; Binz T; Niemann H; Singh BR
    Biochemistry; 2000 Mar; 39(9):2399-405. PubMed ID: 10694409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C terminus of the catalytic domain of type A botulinum neurotoxin may facilitate product release from the active site.
    Mizanur RM; Frasca V; Swaminathan S; Bavari S; Webb R; Smith LA; Ahmed SA
    J Biol Chem; 2013 Aug; 288(33):24223-33. PubMed ID: 23779108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic properties of botulinum neurotoxin subtypes A3 and A4.
    Henkel JS; Jacobson M; Tepp W; Pier C; Johnson EA; Barbieri JT
    Biochemistry; 2009 Mar; 48(11):2522-8. PubMed ID: 19256469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biochemical characterization of the protease domain of the mosaic botulinum neurotoxin type HA.
    Lam KH; Sikorra S; Weisemann J; Maatsch H; Perry K; Rummel A; Binz T; Jin R
    Pathog Dis; 2018 Jun; 76(4):. PubMed ID: 29688327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A.
    Rigoni M; Caccin P; Johnson EA; Montecucco C; Rossetto O
    Biochem Biophys Res Commun; 2001 Nov; 288(5):1231-7. PubMed ID: 11700044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of critical residues of choline kinase A2 from Caenorhabditis elegans.
    Yuan C; Kent C
    J Biol Chem; 2004 Apr; 279(17):17801-9. PubMed ID: 14960577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique substrate recognition by botulinum neurotoxins serotypes A and E.
    Chen S; Barbieri JT
    J Biol Chem; 2006 Apr; 281(16):10906-11. PubMed ID: 16478727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of two active site Glu residues in the molecular action of botulinum neurotoxin endopeptidase.
    Kukreja RV; Sharma S; Cai S; Singh BR
    Biochim Biophys Acta; 2007 Feb; 1774(2):213-22. PubMed ID: 17189717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure- and substrate-based inhibitor design for Clostridium botulinum neurotoxin serotype A.
    Kumaran D; Rawat R; Ludivico ML; Ahmed SA; Swaminathan S
    J Biol Chem; 2008 Jul; 283(27):18883-91. PubMed ID: 18434312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the catalytic properties of the botulinum neurotoxin subtypes A1 and A5.
    Wang D; Krilich J; Pellett S; Baudys J; Tepp WH; Barr JR; Johnson EA; Kalb SR
    Biochim Biophys Acta; 2013 Dec; 1834(12):2722-8. PubMed ID: 24096023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of zinc binding in type A botulinum neurotoxin light chain's toxic structure.
    Li L; Singh BR
    Biochemistry; 2000 Aug; 39(34):10581-6. PubMed ID: 10956050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic, stereochemical, and structural effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase.
    Harris TK; Czerwinski RM; Johnson WH; Legler PM; Abeygunawardana C; Massiah MA; Stivers JT; Whitman CP; Mildvan AS
    Biochemistry; 1999 Sep; 38(38):12343-57. PubMed ID: 10493802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0 A resolution.
    Hanson MA; Stevens RC
    Nat Struct Biol; 2000 Aug; 7(8):687-92. PubMed ID: 10932255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B.
    Fukasawa KM; Hirose J; Hata T; Ono Y
    Biochemistry; 2006 Sep; 45(38):11425-31. PubMed ID: 16981702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SNAP-25 substrate peptide (residues 180-183) binds to but bypasses cleavage by catalytically active Clostridium botulinum neurotoxin E.
    Agarwal R; Swaminathan S
    J Biol Chem; 2008 Sep; 283(38):25944-51. PubMed ID: 18658150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Botulinum neurotoxin type A: cleavage of the heavy chain into two halves and their partial sequences.
    Sathyamoorthy V; Dasgupta BR; Foley J; Niece RL
    Arch Biochem Biophys; 1988 Oct; 266(1):142-51. PubMed ID: 3178218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.