BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 182136)

  • 1. Ascorbic acid, metal ions and the superoxide radical.
    Halliwell B; Foyer CH
    Biochem J; 1976 Jun; 155(3):697-700. PubMed ID: 182136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin trapping study of superoxide production in ferrous ion oxidation.
    Kosaka H; Shiga T
    Free Radic Res Commun; 1993; 19 Suppl 1():S63-9. PubMed ID: 8282233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide ion as active intermediate in the autoxidation of ascorbate by molecular oxygen. Effect of superoxide dismutase.
    Scarpa M; Stevanato R; Viglino P; Rigo A
    J Biol Chem; 1983 Jun; 258(11):6695-7. PubMed ID: 6304051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogentisic acid autoxidation and oxygen radical generation: implications for the etiology of alkaptonuric arthritis.
    Martin JP; Batkoff B
    Free Radic Biol Med; 1987; 3(4):241-50. PubMed ID: 3121448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reaction of superoxide radical with iron complexes of EDTA studied by pulse radiolysis.
    Ilan YA; Czapski G
    Biochim Biophys Acta; 1977 Jul; 498(1):386-94. PubMed ID: 18210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascorbate autoxidation in the presence of iron and copper chelates.
    Buettner GR
    Free Radic Res Commun; 1986; 1(6):349-53. PubMed ID: 2851502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma.
    Minetti M; Forte T; Soriani M; Quaresima V; Menditto A; Ferrari M
    Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):459-65. PubMed ID: 1312330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ascorbate on the DT-diaphorase-mediated redox cycling of 2-methyl-1,4-naphthoquinone.
    Jarabak R; Jarabak J
    Arch Biochem Biophys; 1995 Apr; 318(2):418-23. PubMed ID: 7733672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual mechanism of mangiferin protection against iron-induced damage to 2-deoxyribose and ascorbate oxidation.
    Pardo-Andreu GL; Delgado R; Núñez-Sellés AJ; Vercesi AE
    Pharmacol Res; 2006 Mar; 53(3):253-60. PubMed ID: 16412661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweier JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):404-11. PubMed ID: 8643079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between metals, ligands, and oxygen in the autoxidation of 6-hydroxydopamine: mechanisms by which metal chelation enhances inhibition by superoxide dismutase.
    Bandy B; Davison AJ
    Arch Biochem Biophys; 1987 Dec; 259(2):305-15. PubMed ID: 3122661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide-dependent oxidation of extracellular reducing agents by isolated neutrophils.
    Thomas EL; Learn DB; Jefferson MM; Weatherred W
    J Biol Chem; 1988 Feb; 263(5):2178-86. PubMed ID: 2828362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2- and H2O2.
    Adak S; Bandyopadhyay U; Bandyopadhyay D; Banerjee RK
    Biochemistry; 1998 Dec; 37(48):16922-33. PubMed ID: 9836585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple electrophoretic variants of Cu, Zn superoxide dismutase as expression of the enzyme aging. Effects of H2O2, ascorbate and metal ions.
    Mavelli I; Ciriolo MR; Rotilio G
    Biochem Biophys Res Commun; 1983 Dec; 117(3):677-81. PubMed ID: 6421286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of L-ascorbic acid by superoxide dismutase and catalase.
    Miyake N; Kim M; Kurata T
    Biosci Biotechnol Biochem; 1999 Jan; 63(1):54-7. PubMed ID: 10052121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative damage to bovine serum albumin induced by hydroxyl radical generating systems of xanthine oxidase + EDTA-Fe3+ and ascorbate + EDTA-Fe3+.
    Miura T; Muraoka S; Ogiso T
    Chem Biol Interact; 1992 Dec; 85(2-3):243-54. PubMed ID: 1337312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoxidation of soluble trypsin-cleaved microsomal ferrocytochrome b5 and formation of superoxide radicals.
    Berman MC; Adnams CM; Ivanetich KM; Kench JE
    Biochem J; 1976 Jul; 157(1):237-46. PubMed ID: 183743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inability of superoxide dismutase to inhibit the depolymerization of hyaluronic acid by ferrous ions and ascorbate.
    Hofmann H; Schmut O
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1980; 214(3):181-5. PubMed ID: 6905674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative deamination by hydrogen peroxide in the presence of metals.
    Akagawa M; Suyama K
    Free Radic Res; 2002 Jan; 36(1):13-21. PubMed ID: 11999699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.