These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 18214380)

  • 1. Plasmon-waveguide resonance spectroscopy studies of lateral segregation in solid-supported proteolipid bilayers.
    Salamon Z; Devanathan S; Tollin G
    Methods Mol Biol; 2007; 398():159-78. PubMed ID: 18214380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape.
    Salamon Z; Tollin G
    Biophys J; 2001 Mar; 80(3):1557-67. PubMed ID: 11222316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different structural states of the proteolipid membrane are produced by ligand binding to the human delta-opioid receptor as shown by plasmon-waveguide resonance spectroscopy.
    Alves ID; Cowell SM; Salamon Z; Devanathan S; Tollin G; Hruby VJ
    Mol Pharmacol; 2004 May; 65(5):1248-57. PubMed ID: 15102953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-waveguide resonance studies of lateral segregation of lipids and proteins into microdomains (rafts) in solid-supported bilayers.
    Salamon Z; Devanathan S; Alves ID; Tollin G
    J Biol Chem; 2005 Mar; 280(12):11175-84. PubMed ID: 15668234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties.
    Salamon Z; Macleod HA; Tollin G
    Biophys J; 1997 Nov; 73(5):2791-7. PubMed ID: 9370473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of G-Protein Coupled Receptor Signaling in Membrane Environment by Plasmon Waveguide Resonance.
    Alves ID; Lecomte S
    Acc Chem Res; 2019 Apr; 52(4):1059-1067. PubMed ID: 30865424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers.
    Alves ID; Salamon Z; Hruby VJ; Tollin G
    Biochemistry; 2005 Jun; 44(25):9168-78. PubMed ID: 15966741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and aggregation of the amyloid Abeta(1-40) peptide in solid-supported lipid bilayers.
    Devanathan S; Salamon Z; Lindblom G; Gröbner G; Tollin G
    FEBS J; 2006 Apr; 273(7):1389-402. PubMed ID: 16689927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphical analysis of mass and anisotropy changes observed by plasmon-waveguide resonance spectroscopy can provide useful insights into membrane protein function.
    Salamon Z; Tollin G
    Biophys J; 2004 Apr; 86(4):2508-16. PubMed ID: 15041687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of plasmon waveguide resonance (PWR) spectroscopy for examining binding, signaling and lipid domain partitioning of membrane proteins.
    Hruby VJ; Alves I; Cowell S; Salamon Z; Tollin G
    Life Sci; 2010 Apr; 86(15-16):569-74. PubMed ID: 19281827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband plasmon waveguide resonance spectroscopy for probing biological thin films.
    Zhang H; Orosz KS; Takahashi H; Saavedra SS
    Appl Spectrosc; 2009 Sep; 63(9):1062-7. PubMed ID: 19796490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray diffraction to determine the thickness of raft and nonraft bilayers.
    McIntosh TJ
    Methods Mol Biol; 2007; 398():221-30. PubMed ID: 18214383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-waveguide resonance studies of ligand binding to the human beta 2-adrenergic receptor.
    Devanathan S; Yao Z; Salamon Z; Kobilka B; Tollin G
    Biochemistry; 2004 Mar; 43(11):3280-8. PubMed ID: 15023079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-waveguide resonance (PWR) spectroscopy for directly viewing rates of GPCR/G-protein interactions and quantifying affinities.
    Hruby VJ; Tollin G
    Curr Opin Pharmacol; 2007 Oct; 7(5):507-14. PubMed ID: 17869585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes.
    Salamon Z; Lindblom G; Tollin G
    Biophys J; 2003 Mar; 84(3):1796-807. PubMed ID: 12609881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon waveguide resonance Raman spectroscopy.
    McKee KJ; Meyer MW; Smith EA
    Anal Chem; 2012 Nov; 84(21):9049-55. PubMed ID: 23046486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of agonists, antagonists and inverse agonists to the human delta-opioid receptor produces distinctly different conformational states distinguishable by plasmon-waveguide resonance spectroscopy.
    Salamon Z; Hruby VJ; Tollin G; Cowell S
    J Pept Res; 2002 Dec; 60(6):322-8. PubMed ID: 12464110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon coupled fluorescence in the ultraviolet and visible spectral regions using zinc thin films.
    Aslan K; Previte MJ; Zhang Y; Geddes CD
    Anal Chem; 2008 Oct; 80(19):7304-12. PubMed ID: 18763808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Techniques: plasmon-waveguide resonance (PWR) spectroscopy as a tool to study ligand-GPCR interactions.
    Tollin G; Salamon Z; Hruby VJ
    Trends Pharmacol Sci; 2003 Dec; 24(12):655-9. PubMed ID: 14654307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.