BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18214387)

  • 1. Atomistic and coarse-grained computer simulations of raft-like lipid mixtures.
    Pandit SA; Scott HL
    Methods Mol Biol; 2007; 398():283-302. PubMed ID: 18214387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale simulations of heterogeneous model membranes.
    Pandit SA; Scott HL
    Biochim Biophys Acta; 2009 Jan; 1788(1):136-48. PubMed ID: 18848917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide.
    Hall A; Róg T; Karttunen M; Vattulainen I
    J Phys Chem B; 2010 Jun; 114(23):7797-807. PubMed ID: 20496924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular-level organization of saturated and polyunsaturated fatty acids in a phosphatidylcholine bilayer containing cholesterol.
    Pitman MC; Suits F; Mackerell AD; Feller SE
    Biochemistry; 2004 Dec; 43(49):15318-28. PubMed ID: 15581344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulations of phase separation in lipid bilayers and monolayers.
    Baoukina S; Tieleman DP
    Methods Mol Biol; 2015; 1232():307-22. PubMed ID: 25331143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of nano-sized raft-like domains on the plasma membrane.
    Herrera FE; Pantano S
    J Chem Phys; 2012 Jan; 136(1):015103. PubMed ID: 22239803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral organization in lipid-cholesterol mixed bilayers.
    Pandit SA; Khelashvili G; Jakobsson E; Grama A; Scott HL
    Biophys J; 2007 Jan; 92(2):440-7. PubMed ID: 17071661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of bilayers containing mixtures of sphingomyelin with cholesterol and phosphatidylcholine with cholesterol.
    Zhang Z; Bhide SY; Berkowitz ML
    J Phys Chem B; 2007 Nov; 111(44):12888-97. PubMed ID: 17941659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-free coarse-grained lipid model for large-scale simulations.
    Noguchi H
    J Chem Phys; 2011 Feb; 134(5):055101. PubMed ID: 21303161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of the domain organization in sphingomyelin and phosphatidylcholine monolayers.
    Prenner E; Honsek G; Hönig D; Möbius D; Lohner K
    Chem Phys Lipids; 2007 Feb; 145(2):106-18. PubMed ID: 17188673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray diffraction to determine the thickness of raft and nonraft bilayers.
    McIntosh TJ
    Methods Mol Biol; 2007; 398():221-30. PubMed ID: 18214383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies.
    Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M
    J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular view of cholesterol flip-flop and chemical potential in different membrane environments.
    Bennett WF; MacCallum JL; Hinner MJ; Marrink SJ; Tieleman DP
    J Am Chem Soc; 2009 Sep; 131(35):12714-20. PubMed ID: 19673519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomistic simulations of a multicomponent asymmetric lipid bilayer.
    Polley A; Vemparala S; Rao M
    J Phys Chem B; 2012 Nov; 116(45):13403-10. PubMed ID: 23088327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-angle neutron scattering to detect rafts and lipid domains.
    Pencer J; Mills TT; Kucerka N; Nieh MP; Katsaras J
    Methods Mol Biol; 2007; 398():231-44. PubMed ID: 18214384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy.
    Kahya N
    Chem Phys Lipids; 2006 Jun; 141(1-2):158-68. PubMed ID: 16696961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure of phosphatidylinositol transfer proteins to sphingomyelin-cholesterol membranes suggests transient but productive interactions with raft-like, liquid-ordered domains.
    Miller EC; Helmkamp GM
    Biochemistry; 2003 Nov; 42(45):13250-9. PubMed ID: 14609336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR.
    Aussenac F; Tavares M; Dufourc EJ
    Biochemistry; 2003 Feb; 42(6):1383-90. PubMed ID: 12578350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.