BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18214523)

  • 1. Na(+)-K (+) pump location and translocation during muscle contraction in rat skeletal muscle.
    Kristensen M; Rasmussen MK; Juel C
    Pflugers Arch; 2008 Aug; 456(5):979-89. PubMed ID: 18214523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise-induced regulation of phospholemman (FXYD1) in rat skeletal muscle: implications for Na+/K+-ATPase activity.
    Rasmussen MK; Kristensen M; Juel C
    Acta Physiol (Oxf); 2008 Sep; 194(1):67-79. PubMed ID: 18373741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of electrical stimulation and insulin on Na+-K+-ATPase ([3H]ouabain binding) in rat skeletal muscle.
    McKenna MJ; Gissel H; Clausen T
    J Physiol; 2003 Mar; 547(Pt 2):567-80. PubMed ID: 12562912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity.
    Juel C
    Am J Physiol Regul Integr Comp Physiol; 2009 Jan; 296(1):R125-32. PubMed ID: 18987285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle in vivo.
    Murphy KT; Nielsen OB; Clausen T
    Exp Physiol; 2008 Dec; 93(12):1249-62. PubMed ID: 18586859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle: effects of high-fat diet and exercise.
    Galuska D; Kotova O; Barrès R; Chibalina D; Benziane B; Chibalin AV
    Am J Physiol Endocrinol Metab; 2009 Jul; 297(1):E38-49. PubMed ID: 19366873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct α2 Na,K-ATPase membrane pools are differently involved in early skeletal muscle remodeling during disuse.
    Kravtsova VV; Petrov AM; Matchkov VV; Bouzinova EV; Vasiliev AN; Benziane B; Zefirov AL; Chibalin AV; Heiny JA; Krivoi II
    J Gen Physiol; 2016 Feb; 147(2):175-88. PubMed ID: 26755774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained?
    Clausen T
    Exp Physiol; 2011 Mar; 96(3):356-68. PubMed ID: 21123362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The significance of active Na+,K+ transport in the maintenance of contractility in rat skeletal muscle.
    Nielsen OB; Clausen T
    Acta Physiol Scand; 1996 Jun; 157(2):199-209. PubMed ID: 8800360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Na,K pumps in restoring contractility following loss of cell membrane integrity in rat skeletal muscle.
    Clausen T; Gissel H
    Acta Physiol Scand; 2005 Mar; 183(3):263-71. PubMed ID: 15743386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Na(+)-K+ pump activity in contracting rat muscle.
    Nielsen OB; Clausen T
    J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):571-81. PubMed ID: 9379412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversibility of exercise-induced translocation of Na+-K+ pump subunits to the plasma membrane in rat skeletal muscle.
    Juel C; Grunnet L; Holse M; Kenworthy S; Sommer V; Wulff T
    Pflugers Arch; 2001 Nov; 443(2):212-7. PubMed ID: 11713646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-K+-ATPase in rat skeletal muscle: content, isoform, and activity characteristics.
    Fowles JR; Green HJ; Ouyang J
    J Appl Physiol (1985); 2004 Jan; 96(1):316-26. PubMed ID: 12882989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resting membrane potential and Na+,K+-ATPase of rat fast and slow muscles during modeling of hypogravity.
    Tyapkina O; Volkov E; Nurullin L; Shenkman B; Kozlovskaya I; Nikolsky E; Vyskocil F
    Physiol Res; 2009; 58(4):599-603. PubMed ID: 19761352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity.
    Nielsen OB; Ørtenblad N; Lamb GD; Stephenson DG
    J Physiol; 2004 May; 557(Pt 1):133-46. PubMed ID: 15034125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta -D-ribofuranoside.
    Saha AK; Schwarsin AJ; Roduit R; Masse F; Kaushik V; Tornheim K; Prentki M; Ruderman NB
    J Biol Chem; 2000 Aug; 275(32):24279-83. PubMed ID: 10854420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise-induced translocation of Na(+)-K(+) pump subunits to the plasma membrane in human skeletal muscle.
    Juel C; Nielsen JJ; Bangsbo J
    Am J Physiol Regul Integr Comp Physiol; 2000 Apr; 278(4):R1107-10. PubMed ID: 10749801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na+/K(+)-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle.
    Hundal HS; Marette A; Mitsumoto Y; Ramlal T; Blostein R; Klip A
    J Biol Chem; 1992 Mar; 267(8):5040-3. PubMed ID: 1312081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise-induced increase in maximal in vitro Na-K-ATPase activity in human skeletal muscle.
    Juel C; Nordsborg NB; Bangsbo J
    Am J Physiol Regul Integr Comp Physiol; 2013 Jun; 304(12):R1161-5. PubMed ID: 23576618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contraction-induced changes in skeletal muscle Na(+), K(+) pump mRNA expression - importance of exercise intensity and Ca(2+)-mediated signalling.
    Nordsborg NB; Kusuhara K; Hellsten Y; Lyngby S; Lundby C; Madsen K; Pilegaard H
    Acta Physiol (Oxf); 2010 Apr; 198(4):487-98. PubMed ID: 19895607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.