BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 18214654)

  • 21. Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles.
    Allan AK; Du J; Davies SA; Dow JA
    Physiol Genomics; 2005 Jul; 22(2):128-38. PubMed ID: 15855386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. V-ATPase engagement in autophagic processes.
    Mijaljica D; Prescott M; Devenish RJ
    Autophagy; 2011 Jun; 7(6):666-8. PubMed ID: 21494095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel insights into V-ATPase functioning: distinct roles for its accessory subunits ATP6AP1/Ac45 and ATP6AP2/(pro) renin receptor.
    Jansen EJ; Martens GJ
    Curr Protein Pept Sci; 2012 Mar; 13(2):124-33. PubMed ID: 22044156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion.
    Mauvezin C; Neufeld TP
    Autophagy; 2015; 11(8):1437-8. PubMed ID: 26156798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function.
    Marshansky V; Futai M
    Curr Opin Cell Biol; 2008 Aug; 20(4):415-26. PubMed ID: 18511251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Breaking up and making up: The secret life of the vacuolar H
    Oot RA; Couoh-Cardel S; Sharma S; Stam NJ; Wilkens S
    Protein Sci; 2017 May; 26(5):896-909. PubMed ID: 28247968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast.
    Martínez-Muñoz GA; Kane P
    J Biol Chem; 2008 Jul; 283(29):20309-19. PubMed ID: 18502746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential expression of vacuolar H+-ATPase subunit c genes in tissues active in membrane trafficking and their roles in plant growth as revealed by RNAi.
    Padmanaban S; Lin X; Perera I; Kawamura Y; Sze H
    Plant Physiol; 2004 Apr; 134(4):1514-26. PubMed ID: 15051861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in Use of Capsule-Based Fluorescent Sensors for Measuring Acidification of Endocytic Compartments in Cells with Altered Expression of V-ATPase Subunit V1G1.
    De Luca M; Ferraro MM; Hartmann R; Rivera-Gil P; Klingl A; Nazarenus M; Ramirez A; Parak WJ; Bucci C; Rinaldi R; del Mercato LL
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15052-60. PubMed ID: 26086317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. V-ATPase (Vacuolar ATPase) Activity Required for ABCA1 (ATP-Binding Cassette Protein A1)-Mediated Cholesterol Efflux.
    Lorkowski SW; Brubaker G; Gulshan K; Smith JD
    Arterioscler Thromb Vasc Biol; 2018 Nov; 38(11):2615-2625. PubMed ID: 30354238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. V-ATPase functions in normal and disease processes.
    Hinton A; Bond S; Forgac M
    Pflugers Arch; 2009 Jan; 457(3):589-98. PubMed ID: 18026982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diverse and essential roles of mammalian vacuolar-type proton pump ATPase: toward the physiological understanding of inside acidic compartments.
    Sun-Wada GH; Wada Y; Futai M
    Biochim Biophys Acta; 2004 Jul; 1658(1-2):106-14. PubMed ID: 15282181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vacuolar-type proton ATPase is required for maintenance of apicobasal polarity of embryonic visceral endoderm.
    Sun-Wada GH; Tabata H; Wada Y
    Sci Rep; 2021 Sep; 11(1):19355. PubMed ID: 34588579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The V-ATPase: small cargo, large effects.
    Schumacher K; Krebs M
    Curr Opin Plant Biol; 2010 Dec; 13(6):724-30. PubMed ID: 20801076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells.
    Sautin YY; Lu M; Gaugler A; Zhang L; Gluck SL
    Mol Cell Biol; 2005 Jan; 25(2):575-89. PubMed ID: 15632060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A structural model of the vacuolar ATPase from transmission electron microscopy.
    Wilkens S; Zhang Z; Zheng Y
    Micron; 2005; 36(2):109-26. PubMed ID: 15629643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. V-ATPase, ScNhx1p and yeast vacuole fusion.
    Qiu QS
    J Genet Genomics; 2012 Apr; 39(4):167-71. PubMed ID: 22546538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway.
    Hurtado-Lorenzo A; Skinner M; El Annan J; Futai M; Sun-Wada GH; Bourgoin S; Casanova J; Wildeman A; Bechoua S; Ausiello DA; Brown D; Marshansky V
    Nat Cell Biol; 2006 Feb; 8(2):124-36. PubMed ID: 16415858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans.
    Jia C; Yu Q; Xu N; Zhang B; Dong Y; Ding X; Chen Y; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2014 Oct; 71():58-67. PubMed ID: 25220074
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A plant proton-pumping inorganic pyrophosphatase functionally complements the vacuolar ATPase transport activity and confers bafilomycin resistance in yeast.
    Pérez-Castiñeira JR; Hernández A; Drake R; Serrano A
    Biochem J; 2011 Jul; 437(2):269-78. PubMed ID: 21612578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.