BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 18214835)

  • 1. Evidences for tangential migrations in Xenopus telencephalon: developmental patterns and cell tracking experiments.
    Moreno N; González A; Rétaux S
    Dev Neurobiol; 2008 Mar; 68(4):504-20. PubMed ID: 18214835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas).
    Cobos I; Puelles L; Martínez S
    Dev Biol; 2001 Nov; 239(1):30-45. PubMed ID: 11784017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the genes GAD67 and Distal-less-4 in the forebrain of Xenopus laevis confirms a common pattern in tetrapods.
    Brox A; Puelles L; Ferreiro B; Medina L
    J Comp Neurol; 2003 Jun; 461(3):370-93. PubMed ID: 12746875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tangentially migrating GABAergic cells of subpallial origin invade massively the pallium in developing sharks.
    Carrera I; Ferreiro-Galve S; Sueiro C; Anadón R; Rodríguez-Moldes I
    Brain Res Bull; 2008 Mar; 75(2-4):405-9. PubMed ID: 18331906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Islet1 as a marker of subdivisions and cell types in the developing forebrain of Xenopus.
    Moreno N; Domínguez L; Rétaux S; González A
    Neuroscience; 2008 Jul; 154(4):1423-39. PubMed ID: 18515014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining pallial and subpallial divisions in the developing Xenopus forebrain.
    Bachy I; Berthon J; Rétaux S
    Mech Dev; 2002 Sep; 117(1-2):163-72. PubMed ID: 12204256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LIM-homeodomain genes as developmental and adult genetic markers of Xenopus forebrain functional subdivisions.
    Moreno N; Bachy I; Rétaux S; González A
    J Comp Neurol; 2004 Apr; 472(1):52-72. PubMed ID: 15024752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulation of tangential neuronal migration in the developing forebrain.
    Chédotal A; Rijli FM
    Curr Opin Neurobiol; 2009 Apr; 19(2):139-45. PubMed ID: 19428236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tangential migratory pathways of subpallial origin in the embryonic telencephalon of sharks: evolutionary implications.
    Quintana-Urzainqui I; Rodríguez-Moldes I; Mazan S; Candal E
    Brain Struct Funct; 2015 Sep; 220(5):2905-26. PubMed ID: 25079345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the genes Emx1, Tbr1, and Eomes (Tbr2) in the telencephalon of Xenopus laevis confirms the existence of a ventral pallial division in all tetrapods.
    Brox A; Puelles L; Ferreiro B; Medina L
    J Comp Neurol; 2004 Jul; 474(4):562-77. PubMed ID: 15174073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subdivisions and derivatives of the chicken subpallium based on expression of LIM and other regulatory genes and markers of neuron subpopulations during development.
    Abellán A; Medina L
    J Comp Neurol; 2009 Aug; 515(4):465-501. PubMed ID: 19459222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anuran olfactory bulb organization: embryology, neurochemistry and hodology.
    Moreno N; Morona R; López JM; Dominguez L; Muñoz M; González A
    Brain Res Bull; 2008 Mar; 75(2-4):241-5. PubMed ID: 18331878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain.
    Corbin JG; Nery S; Fishell G
    Nat Neurosci; 2001 Nov; 4 Suppl():1177-82. PubMed ID: 11687827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olfactory and amygdalar structures of the chicken ventral pallium based on the combinatorial expression patterns of LIM and other developmental regulatory genes.
    Abellán A; Legaz I; Vernier B; Rétaux S; Medina L
    J Comp Neurol; 2009 Sep; 516(3):166-86. PubMed ID: 19598282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative functional analysis provides evidence for a crucial role for the homeobox gene Nkx2.1/Titf-1 in forebrain evolution.
    van den Akker WM; Brox A; Puelles L; Durston AJ; Medina L
    J Comp Neurol; 2008 Jan; 506(2):211-23. PubMed ID: 18022953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How neuronal migration contributes to the morphogenesis of the CNS: insights from the zebrafish.
    Mione M; Baldessari D; Deflorian G; Nappo G; Santoriello C
    Dev Neurosci; 2008; 30(1-3):65-81. PubMed ID: 18075256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subdivisions of the turtle Pseudemys scripta subpallium based on the expression of regulatory genes and neuronal markers.
    Moreno N; Morona R; López JM; González A
    J Comp Neurol; 2010 Dec; 518(24):4877-902. PubMed ID: 21031557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radial and tangential migration of telencephalic somatostatin neurons originated from the mouse diagonal area.
    Puelles L; Morales-Delgado N; Merchán P; Castro-Robles B; Martínez-de-la-Torre M; Díaz C; Ferran JL
    Brain Struct Funct; 2016 Jul; 221(6):3027-65. PubMed ID: 26189100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurotransmitters regulate cell migration in the telencephalon.
    Heng JI; Moonen G; Nguyen L
    Eur J Neurosci; 2007 Aug; 26(3):537-46. PubMed ID: 17686035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras.
    Cobos I; Shimamura K; Rubenstein JL; Martínez S; Puelles L
    Dev Biol; 2001 Nov; 239(1):46-67. PubMed ID: 11784018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.