BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 18214835)

  • 21. Comparison of the mammalian and avian telencephalon from the perspective of gene expression data.
    Puelles L; Kuwana E; Puelles E; Rubenstein JL
    Eur J Morphol; 1999 Apr; 37(2-3):139-50. PubMed ID: 10342446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium.
    Puelles L
    Philos Trans R Soc Lond B Biol Sci; 2001 Oct; 356(1414):1583-98. PubMed ID: 11604125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pallio-pallial tangential migrations and growth signaling: new scenario for cortical evolution?
    Puelles L
    Brain Behav Evol; 2011; 78(1):108-27. PubMed ID: 21701143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of the vomeronasal amygdala in anuran amphibians: hodological, neurochemical, and gene expression characterization.
    Moreno N; González A
    J Comp Neurol; 2007 Aug; 503(6):815-31. PubMed ID: 17570503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1.
    Puelles L; Kuwana E; Puelles E; Bulfone A; Shimamura K; Keleher J; Smiga S; Rubenstein JL
    J Comp Neurol; 2000 Aug; 424(3):409-38. PubMed ID: 10906711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absence of Tangentially Migrating Glutamatergic Neurons in the Developing Avian Brain.
    García-Moreno F; Anderton E; Jankowska M; Begbie J; Encinas JM; Irimia M; Molnár Z
    Cell Rep; 2018 Jan; 22(1):96-109. PubMed ID: 29298437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conserved pattern of tangential neuronal migration during forebrain development.
    Métin C; Alvarez C; Moudoux D; Vitalis T; Pieau C; Molnár Z
    Development; 2007 Aug; 134(15):2815-27. PubMed ID: 17611228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GABA immunoreactivity in the developing rat thalamus and Otx2 homeoprotein expression in migrating neurons.
    Inverardi F; Beolchi MS; Ortino B; Moroni RF; Regondi MC; Amadeo A; Frassoni C
    Brain Res Bull; 2007 Jun; 73(1-3):64-74. PubMed ID: 17499638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Semaphorin5A expression in the developing chick telencephalon.
    Pineda D; García B; Olmos JL; Dávila JC; Real MA; Guirado S
    Brain Res Bull; 2005 Sep; 66(4-6):436-40. PubMed ID: 16144627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of tangential/non-radial migration of neurons in the developing cerebral cortex.
    Nakajima K
    Neurochem Int; 2007; 51(2-4):121-31. PubMed ID: 17588709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tangential migration of cells from the basal to the dorsal telencephalic regions in the chick.
    Tuorto F; Alifragis P; Failla V; Parnavelas JG; Gulisano M
    Eur J Neurosci; 2003 Dec; 18(12):3388-93. PubMed ID: 14686912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early telencephalic migration topographically converging in the olfactory cortex.
    García-Moreno F; López-Mascaraque L; de Carlos JA
    Cereb Cortex; 2008 Jun; 18(6):1239-52. PubMed ID: 17878174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the Expression Pattern of Cajal-Retzius Cell Markers in the Xenopus laevis Forebrain.
    Jiménez S; Moreno N
    Brain Behav Evol; 2022; 96(4-6):263-282. PubMed ID: 34614492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Patterns of neurogenesis and amplitude of Reelin expression are essential for making a mammalian-type cortex.
    Nomura T; Takahashi M; Hara Y; Osumi N
    PLoS One; 2008 Jan; 3(1):e1454. PubMed ID: 18197264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The telencephalon of the frog Xenopus based on calretinin immunostaining and gene expression patterns.
    Brox A; Ferreiro B; Puelles L; Medina L
    Brain Res Bull; 2002 Feb-Mar 1; 57(3-4):381-4. PubMed ID: 11922993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phylogeny of the telencephalic subventricular zone in sauropsids: evidence for the sequential evolution of pallial and subpallial subventricular zones.
    Charvet CJ; Owerkowicz T; Striedter GF
    Brain Behav Evol; 2009; 73(4):285-94. PubMed ID: 19641308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An evolutionary interpretation of teleostean forebrain anatomy.
    Mueller T; Wullimann MF
    Brain Behav Evol; 2009; 74(1):30-42. PubMed ID: 19729894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calbindin-D28k and calretinin expression in the forebrain of anuran and urodele amphibians: further support for newly identified subdivisions.
    Morona R; González A
    J Comp Neurol; 2008 Nov; 511(2):187-220. PubMed ID: 18781620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of a distinct subpopulation of striatal projection neurons expressing the Dlx genes in the basal ganglia through the activity of the I56ii enhancer.
    Ghanem N; Yu M; Poitras L; Rubenstein JL; Ekker M
    Dev Biol; 2008 Oct; 322(2):415-24. PubMed ID: 18706405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Control of neural cell migration during the development of the central nervous system].
    Yagi H; Sato M
    Brain Nerve; 2008 Apr; 60(4):383-94. PubMed ID: 18421980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.