BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 18214835)

  • 41. 3H-thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: II. Dynamics of neuronal migration, displacement, and aggregation.
    Tsai HM; Garber BB; Larramendi LM
    J Comp Neurol; 1981 May; 198(2):293-306. PubMed ID: 7240447
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relationship between GABAergic interneurons migration and early neocortical network activity.
    de Lima AD; Gieseler A; Voigt T
    Dev Neurobiol; 2009 Feb 1-15; 69(2-3):105-23. PubMed ID: 19086030
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The dispersion of clonally related cells in the developing chick telencephalon.
    Szele FG; Cepko CL
    Dev Biol; 1998 Mar; 195(2):100-13. PubMed ID: 9520328
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The LIM-homeodomain gene family in the developing Xenopus brain: conservation and divergences with the mouse related to the evolution of the forebrain.
    Bachy I; Vernier P; Retaux S
    J Neurosci; 2001 Oct; 21(19):7620-9. PubMed ID: 11567052
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Golgi study of the telencephalon of the small-spotted dogfish Scyliorhinus canicula L.
    Manso MJ; Anadón R
    J Comp Neurol; 1993 Jul; 333(4):485-502. PubMed ID: 8370814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of the Pallial Amygdala in Anurans: Derivatives and Cellular Components.
    Jiménez S; Moreno N
    Brain Behav Evol; 2022; 97(6):309-320. PubMed ID: 35613549
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential growth of the cell production systems in the lateral wall of the developing mouse telencephalon.
    Smart IH
    J Anat; 1985 Aug; 141():219-29. PubMed ID: 4077718
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reelin, radial fibers and cortical evolution: insights from comparative analysis of the mammalian and avian telencephalon.
    Nomura T; Hattori M; Osumi N
    Dev Growth Differ; 2009 Apr; 51(3):287-97. PubMed ID: 19210541
    [TBL] [Abstract][Full Text] [Related]  

  • 49. GABAergic specification in the basal forebrain is controlled by the LIM-hd factor Lhx7.
    Bachy I; Rétaux S
    Dev Biol; 2006 Mar; 291(2):218-26. PubMed ID: 16438949
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression patterns of developmental regulatory genes show comparable divisions in the telencephalon of Xenopus and mouse: insights into the evolution of the forebrain.
    Medina L; Brox A; Legaz I; García-López M; Puelles L
    Brain Res Bull; 2005 Sep; 66(4-6):297-302. PubMed ID: 16144605
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions.
    Domínguez L; Morona R; González A; Moreno N
    J Comp Neurol; 2013 Mar; 521(4):725-59. PubMed ID: 22965483
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New directions in neuronal migration.
    Hatten ME
    Science; 2002 Sep; 297(5587):1660-3. PubMed ID: 12215636
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immunohistochemical organization of the forebrain in the white sturgeon, Acipenser transmontanus.
    Piñuela C; Northcutt RG
    Brain Behav Evol; 2007; 69(4):229-53. PubMed ID: 17299256
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neurotransmitters and brain maturation: early paracrine actions of GABA and glutamate modulate neuronal migration.
    Manent JB; Represa A
    Neuroscientist; 2007 Jun; 13(3):268-79. PubMed ID: 17519369
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pallial origin of mitral cells in the olfactory bulbs of Xenopus.
    Moreno N; Bachy I; Rétaux S; González A
    Neuroreport; 2003 Dec; 14(18):2355-8. PubMed ID: 14663190
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acoustically evoked immediate early gene expression in the pallium of female túngara frogs.
    Mangiamele LA; Burmeister SS
    Brain Behav Evol; 2008 Nov; 72(3):239-50. PubMed ID: 18997464
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species.
    Luzzati F; Bonfanti L; Fasolo A; Peretto P
    Cereb Cortex; 2009 May; 19(5):1028-41. PubMed ID: 18832334
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression of drebrin E in migrating neuroblasts in adult rat brain: coincidence between drebrin E disappearance from cell body and cessation of migration.
    Song M; Kojima N; Hanamura K; Sekino Y; Inoue HK; Mikuni M; Shirao T
    Neuroscience; 2008 Mar; 152(3):670-82. PubMed ID: 18304746
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions.
    Domínguez L; González A; Moreno N
    J Comp Neurol; 2014 Apr; 522(5):1102-31. PubMed ID: 24122702
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A developmental approach to forebrain organization in elasmobranchs: new perspectives on the regionalization of the telencephalon.
    Rodríguez-Moldes I
    Brain Behav Evol; 2009; 74(1):20-9. PubMed ID: 19729893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.