BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 18214845)

  • 1. Informatics for peptide retention properties in proteomic LC-MS.
    Shinoda K; Sugimoto M; Tomita M; Ishihama Y
    Proteomics; 2008 Feb; 8(4):787-98. PubMed ID: 18214845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome using artificial neural networks.
    Shinoda K; Sugimoto M; Yachie N; Sugiyama N; Masuda T; Robert M; Soga T; Tomita M
    J Proteome Res; 2006 Dec; 5(12):3312-7. PubMed ID: 17137332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving peptide identification in proteome analysis by a two-dimensional retention time filtering approach.
    Pfeifer N; Leinenbach A; Huber CG; Kohlbacher O
    J Proteome Res; 2009 Aug; 8(8):4109-15. PubMed ID: 19492844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aligning LC peaks by converting gradient retention times to retention index of peptides in proteomic experiments.
    Shinoda K; Tomita M; Ishihama Y
    Bioinformatics; 2008 Jul; 24(14):1590-5. PubMed ID: 18492686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics.
    Dwivedi RC; Spicer V; Harder M; Antonovici M; Ens W; Standing KG; Wilkins JA; Krokhin OV
    Anal Chem; 2008 Sep; 80(18):7036-42. PubMed ID: 18686972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid chromatography at critical conditions: comprehensive approach to sequence-dependent retention time prediction.
    Gorshkov AV; Tarasova IA; Evreinov VV; Savitski MM; Nielsen ML; Zubarev RA; Gorshkov MV
    Anal Chem; 2006 Nov; 78(22):7770-7. PubMed ID: 17105170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reference map for liquid chromatography-mass spectrometry-based quantitative proteomics.
    Kim YJ; Feild B; Fitzhugh W; Heidbrink JL; Duff JW; Heil J; Ruben SM; He T
    Anal Biochem; 2009 Oct; 393(2):155-62. PubMed ID: 19538932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elective affinities--bioinformatic analysis of proteomic mass spectrometry data.
    Li X; Pizarro A; Grosser T
    Arch Physiol Biochem; 2009 Dec; 115(5):311-9. PubMed ID: 19911947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving peptide identification using an empirical peptide retention time database.
    Sun W; Zhang L; Yang R; Shao C; Zhang Z; Gao Y
    Rapid Commun Mass Spectrom; 2009 Jan; 23(1):109-18. PubMed ID: 19065623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filtering strategies for improving protein identification in high-throughput MS/MS studies.
    Salmi J; Nyman TA; Nevalainen OS; Aittokallio T
    Proteomics; 2009 Feb; 9(4):848-60. PubMed ID: 19160393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-supervised learning for peptide identification from shotgun proteomics datasets.
    Käll L; Canterbury JD; Weston J; Noble WS; MacCoss MJ
    Nat Methods; 2007 Nov; 4(11):923-5. PubMed ID: 17952086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving tandem mass spectrum identification using peptide retention time prediction across diverse chromatography conditions.
    Klammer AA; Yi X; MacCoss MJ; Noble WS
    Anal Chem; 2007 Aug; 79(16):6111-8. PubMed ID: 17622186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Off-line two-dimensional liquid chromatography with maximized sample loading to reversed-phase liquid chromatography-electrospray ionization tandem mass spectrometry for shotgun proteome analysis.
    Wang N; Xie C; Young JB; Li L
    Anal Chem; 2009 Feb; 81(3):1049-60. PubMed ID: 19178338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of 1-D and 2-D LC MS/MS methods for proteomic analysis of human serum.
    Gilar M; Olivova P; Chakraborty AB; Jaworski A; Geromanos SJ; Gebler JC
    Electrophoresis; 2009 Apr; 30(7):1157-67. PubMed ID: 19283699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics.
    Webb-Robertson BJ; Cannon WR; Oehmen CS; Shah AR; Gurumoorthi V; Lipton MS; Waters KM
    Bioinformatics; 2008 Jul; 24(13):1503-9. PubMed ID: 18453551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteome mapping of nitrotyrosines.
    Bigelow DJ; Qian WJ
    Methods Enzymol; 2008; 440():191-205. PubMed ID: 18423218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics.
    Baczek T; Kaliszan R
    Proteomics; 2009 Feb; 9(4):835-47. PubMed ID: 19160394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry.
    Ning K; Ng HK; Leong HW
    Genome Inform; 2007; 19():119-30. PubMed ID: 18546510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standardization of retention time data for AMT tag proteomics database generation.
    Tarasova IA; Guryca V; Pridatchenko ML; Gorshkov AV; Kieffer-Jaquinod S; Evreinov VV; Masselon CD; Gorshkov MV
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Feb; 877(4):433-40. PubMed ID: 19144581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the precursor ion exclusion feature of liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry for improving protein identification in shotgun proteome analysis.
    Wang N; Li L
    Anal Chem; 2008 Jun; 80(12):4696-710. PubMed ID: 18479145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.