These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 18214953)

  • 1. Probing electric fields in proteins in solution by NMR spectroscopy.
    Hass MA; Jensen MR; Led JJ
    Proteins; 2008 Jul; 72(1):333-43. PubMed ID: 18214953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of micros-ms dynamics of proteins using a combined analysis of 15N NMR relaxation and chemical shift: conformational exchange in plastocyanin induced by histidine protonations.
    Hass MA; Thuesen MH; Christensen HE; Led JJ
    J Am Chem Soc; 2004 Jan; 126(3):753-65. PubMed ID: 14733549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the electronic structure of the blue copper site in plastocyanin by NMR relaxation.
    Hansen DF; Led JJ
    J Am Chem Soc; 2004 Feb; 126(4):1247-52. PubMed ID: 14746497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex of plastocyanin and cytochrome c characterized by NMR chemical shift analysis.
    Ubbink M; Bendall DS
    Biochemistry; 1997 May; 36(21):6326-35. PubMed ID: 9174347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonation of a histidine copper ligand in fern plastocyanin.
    Hulsker R; Mery A; Thomassen EA; Ranieri A; Sola M; Verbeet MP; Kohzuma T; Ubbink M
    J Am Chem Soc; 2007 Apr; 129(14):4423-9. PubMed ID: 17367139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of the acid transition of the active site in plastocyanin.
    Hass MA; Christensen HE; Zhang J; Led JJ
    Biochemistry; 2007 Dec; 46(50):14619-28. PubMed ID: 18020375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic effects on the thermodynamics of protonation of reduced plastocyanin.
    Battistuzzi G; Borsari M; Di Rocco G; Leonardi A; Ranieri A; Sola M
    Chembiochem; 2005 Apr; 6(4):692-6. PubMed ID: 15750998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Backbone dynamics of reduced plastocyanin from the cyanobacterium Anabaena variabilis: regions involved in electron transfer have enhanced mobility.
    Ma L; Hass MA; Vierick N; Kristensen SM; Ulstrup J; Led JJ
    Biochemistry; 2003 Jan; 42(2):320-30. PubMed ID: 12525159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-range nature of the interactions between titratable groups in Bacillus agaradhaerens family 11 xylanase: pH titration of B. agaradhaerens xylanase.
    Betz M; Löhr F; Wienk H; Rüterjans H
    Biochemistry; 2004 May; 43(19):5820-31. PubMed ID: 15134456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of short-lived transient protein-protein interactions by intermolecular nuclear paramagnetic relaxation: plastocyanin from Anabaena variabilis.
    Hansen DF; Hass MA; Christensen HM; Ulstrup J; Led JJ
    J Am Chem Soc; 2003 Jun; 125(23):6858-9. PubMed ID: 12783525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of conformational exchange of a histidine side chain: protonation, rotamerization, and tautomerization of His61 in plastocyanin from Anabaena variabilis.
    Hass MA; Hansen DF; Christensen HE; Led JJ; Kay LE
    J Am Chem Soc; 2008 Jul; 130(26):8460-70. PubMed ID: 18540585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermolecular electrostatic interactions and Brownian tumbling in protein solutions.
    Krushelnitsky A
    Phys Chem Chem Phys; 2006 May; 8(18):2117-28. PubMed ID: 16751869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the use of pseudocontact shifts in the structure determination of metalloproteins.
    Jensen MR; Hansen DF; Ayna U; Dagil R; Hass MA; Christensen HE; Led JJ
    Magn Reson Chem; 2006 Mar; 44(3):294-301. PubMed ID: 16477687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of plastocyanin from the cyanobacterium Anabaena variabilis.
    Schmidt L; Christensen HE; Harris P
    Acta Crystallogr D Biol Crystallogr; 2006 Sep; 62(Pt 9):1022-9. PubMed ID: 16929103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of residue-specific acid dissociation constants for peptides by band-selective homonuclear-decoupled (1)H NMR.
    Wang J; Rabenstein DL
    Anal Chem; 2007 Sep; 79(17):6799-803. PubMed ID: 17672482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the analysis of NMR spectra tracking pH-induced conformational changes: removing artefacts of the electric field on the NMR chemical shift.
    Kukić P; Farrell D; Søndergaard CR; Bjarnadottir U; Bradley J; Pollastri G; Nielsen JE
    Proteins; 2010 Mar; 78(4):971-84. PubMed ID: 19894279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of electrostatic potential surface distribution of wild-type plastocyanin Synechocystis solution structure determined by homonuclear NMR.
    Monleón D; Celda B
    Biopolymers; 2003 Oct; 70(2):212-20. PubMed ID: 14517909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 19F NMR chemical shifts induced by a helical peptide.
    Kubasik MA; Daly E; Blom A
    Chembiochem; 2006 Jul; 7(7):1056-61. PubMed ID: 16755623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of dipole-shielding polarizabilities (sigma(alphabetagamma)I): the influence of uniform electric field effects on the shielding of backbone nuclei in proteins.
    Boyd J; Domene C; Redfield C; Ferraro MB; Lazzeretti P
    J Am Chem Soc; 2003 Aug; 125(32):9556-7. PubMed ID: 12903999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing the charge field effect on amide (15)N chemical shifts for protein structure validation.
    Bader R
    J Phys Chem B; 2009 Jan; 113(1):347-58. PubMed ID: 19118488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.