BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 18214956)

  • 21. Deep learning methods for protein torsion angle prediction.
    Li H; Hou J; Adhikari B; Lyu Q; Cheng J
    BMC Bioinformatics; 2017 Sep; 18(1):417. PubMed ID: 28923002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition.
    Zhou H; Zhou Y
    Proteins; 2004 Jun; 55(4):1005-13. PubMed ID: 15146497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of protein secondary structure content using amino acid composition and evolutionary information.
    Lee S; Lee BC; Kim D
    Proteins; 2006 Mar; 62(4):1107-14. PubMed ID: 16345074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network.
    Lyons J; Dehzangi A; Heffernan R; Sharma A; Paliwal K; Sattar A; Zhou Y; Yang Y
    J Comput Chem; 2014 Oct; 35(28):2040-6. PubMed ID: 25212657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SVM-Cabins: prediction of solvent accessibility using accumulation cutoff set and support vector machine.
    Wang JY; Lee HM; Ahmad S
    Proteins; 2007 Jul; 68(1):82-91. PubMed ID: 17436325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SPIDER2: A Package to Predict Secondary Structure, Accessible Surface Area, and Main-Chain Torsional Angles by Deep Neural Networks.
    Yang Y; Heffernan R; Paliwal K; Lyons J; Dehzangi A; Sharma A; Wang J; Sattar A; Zhou Y
    Methods Mol Biol; 2017; 1484():55-63. PubMed ID: 27787820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PREDITOR: a web server for predicting protein torsion angle restraints.
    Berjanskii MV; Neal S; Wishart DS
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W63-9. PubMed ID: 16845087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of protein relative solvent accessibility with a two-stage SVM approach.
    Nguyen MN; Rajapakse JC
    Proteins; 2005 Apr; 59(1):30-7. PubMed ID: 15696542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein secondary structure prediction with dihedral angles.
    Wood MJ; Hirst JD
    Proteins; 2005 May; 59(3):476-81. PubMed ID: 15778963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intrinsic secondary structure propensities of the amino acids, using statistical phi-psi matrices: comparison with experimental scales.
    Muñoz V; Serrano L
    Proteins; 1994 Dec; 20(4):301-11. PubMed ID: 7731949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High accuracy prediction of beta-turns and their types using propensities and multiple alignments.
    Fuchs PF; Alix AJ
    Proteins; 2005 Jun; 59(4):828-39. PubMed ID: 15822097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LOOPER: a molecular mechanics-based algorithm for protein loop prediction.
    Spassov VZ; Flook PK; Yan L
    Protein Eng Des Sel; 2008 Feb; 21(2):91-100. PubMed ID: 18194981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C; Pollastri G
    Proteins; 2009 Oct; 77(1):181-90. PubMed ID: 19422056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-stage support vector regression approach for predicting accessible surface areas of amino acids.
    Nguyen MN; Rajapakse JC
    Proteins; 2006 May; 63(3):542-50. PubMed ID: 16456847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training.
    Dor O; Zhou Y
    Proteins; 2007 Mar; 66(4):838-45. PubMed ID: 17177203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new approach to predict the helix/strand content of globular proteins.
    Zhang Z; Sun ZR; Zhang CT
    J Theor Biol; 2001 Jan; 208(1):65-78. PubMed ID: 11162053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Steiner minimal trees, twist angles, and the protein folding problem.
    Smith JM; Jang Y; Kim MK
    Proteins; 2007 Mar; 66(4):889-902. PubMed ID: 17173288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Average assignment method for predicting the stability of protein mutants.
    Saraboji K; Gromiha MM; Ponnuswamy MN
    Biopolymers; 2006 May; 82(1):80-92. PubMed ID: 16453276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. D-amino acid residues in peptides and proteins.
    Mitchell JB; Smith J
    Proteins; 2003 Mar; 50(4):563-71. PubMed ID: 12577262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conformational subspace in simulation of early-stage protein folding.
    Jurkowski W; Brylinski M; Konieczny L; Wiíniowski Z; Roterman I
    Proteins; 2004 Apr; 55(1):115-27. PubMed ID: 14997546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.