BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 18214960)

  • 1. Identifying stabilizing key residues in proteins using interresidue interaction energy matrix.
    Bendová-Biedermannová L; Hobza P; Vondrásek J
    Proteins; 2008 Jul; 72(1):402-13. PubMed ID: 18214960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of energy stabilization inside the hydrophobic core of rubredoxin.
    Berka K; Hobza P; Vondrásek J
    Chemphyschem; 2009 Feb; 10(3):543-8. PubMed ID: 19170065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpectedly strong energy stabilization inside the hydrophobic core of small protein rubredoxin mediated by aromatic residues: correlated ab initio quantum chemical calculations.
    Vondrásek J; Bendová L; Klusák V; Hobza P
    J Am Chem Soc; 2005 Mar; 127(8):2615-9. PubMed ID: 15725017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the characterization of energy networks of proteins.
    Veloso CJ; Silveira CH; Melo RC; Ribeiro C; Lopes JC; Santoro MM; Meira W
    Genet Mol Res; 2007 Oct; 6(4):799-820. PubMed ID: 18058705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins.
    Dosztányi Z; Csizmók V; Tompa P; Simon I
    J Mol Biol; 2005 Apr; 347(4):827-39. PubMed ID: 15769473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum chemical quantification of weakly polar interaction energies in the TC5b miniprotein.
    Hatfield MP; Palermo NY; Csontos J; Murphy RF; Lovas S
    J Phys Chem B; 2008 Mar; 112(11):3503-8. PubMed ID: 18303883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How the stabilization of INK4 tumor suppressor 3D structure evaluated by quantum chemical and molecular mechanics calculations corresponds well with experimental results: interplay of association enthalpy, entropy, and solvation effects.
    Otyepka M; Sklenovský P; Horinek D; Kubar T; Hobza P
    J Phys Chem B; 2006 Mar; 110(9):4423-9. PubMed ID: 16509744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A physically meaningful method for the comparison of potential energy functions.
    Alonso JL; Echenique P
    J Comput Chem; 2006 Jan; 27(2):238-52. PubMed ID: 16331642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-residue and solvent-residue interactions in proteins: a statistical study on experimental structures.
    Chelli R; Gervasio FL; Procacci P; Schettino V
    Proteins; 2004 Apr; 55(1):139-51. PubMed ID: 14997548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of cation-pi interactions in DNA binding proteins.
    Gromiha MM; Santhosh C; Ahmad S
    Int J Biol Macromol; 2004 Jun; 34(3):203-11. PubMed ID: 15225993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoelectronic tuning of the structure and stability of the trp cage miniprotein.
    Naduthambi D; Zondlo NJ
    J Am Chem Soc; 2006 Sep; 128(38):12430-1. PubMed ID: 16984189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane.
    Biedermannova L; E Riley K; Berka K; Hobza P; Vondrasek J
    Phys Chem Chem Phys; 2008 Nov; 10(42):6350-9. PubMed ID: 18972023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.
    Martin J; Regad L; Etchebest C; Camproux AC
    Proteins; 2008 Nov; 73(3):672-89. PubMed ID: 18491388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data.
    Pitonák M; Neogrády P; Cerný J; Grimme S; Hobza P
    Chemphyschem; 2009 Jan; 10(1):282-9. PubMed ID: 19115327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Average assignment method for predicting the stability of protein mutants.
    Saraboji K; Gromiha MM; Ponnuswamy MN
    Biopolymers; 2006 May; 82(1):80-92. PubMed ID: 16453276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy.
    He X; Zhang JZ
    J Chem Phys; 2006 May; 124(18):184703. PubMed ID: 16709127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turning a mesophilic protein into a thermophilic one: a computational approach based on 3D structural features.
    Basu S; Sen S
    J Chem Inf Model; 2009 Jul; 49(7):1741-50. PubMed ID: 19586011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins.
    Fedorov DG; Ishida T; Uebayasi M; Kitaura K
    J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-atom contact potential approach to protein thermostability analysis.
    Chen C; Li L; Xiao Y
    Biopolymers; 2007 Jan; 85(1):28-37. PubMed ID: 16964601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.