These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 18214960)
1. Identifying stabilizing key residues in proteins using interresidue interaction energy matrix. Bendová-Biedermannová L; Hobza P; Vondrásek J Proteins; 2008 Jul; 72(1):402-13. PubMed ID: 18214960 [TBL] [Abstract][Full Text] [Related]
2. Analysis of energy stabilization inside the hydrophobic core of rubredoxin. Berka K; Hobza P; Vondrásek J Chemphyschem; 2009 Feb; 10(3):543-8. PubMed ID: 19170065 [TBL] [Abstract][Full Text] [Related]
3. Unexpectedly strong energy stabilization inside the hydrophobic core of small protein rubredoxin mediated by aromatic residues: correlated ab initio quantum chemical calculations. Vondrásek J; Bendová L; Klusák V; Hobza P J Am Chem Soc; 2005 Mar; 127(8):2615-9. PubMed ID: 15725017 [TBL] [Abstract][Full Text] [Related]
4. On the characterization of energy networks of proteins. Veloso CJ; Silveira CH; Melo RC; Ribeiro C; Lopes JC; Santoro MM; Meira W Genet Mol Res; 2007 Oct; 6(4):799-820. PubMed ID: 18058705 [TBL] [Abstract][Full Text] [Related]
5. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. Dosztányi Z; Csizmók V; Tompa P; Simon I J Mol Biol; 2005 Apr; 347(4):827-39. PubMed ID: 15769473 [TBL] [Abstract][Full Text] [Related]
6. Quantum chemical quantification of weakly polar interaction energies in the TC5b miniprotein. Hatfield MP; Palermo NY; Csontos J; Murphy RF; Lovas S J Phys Chem B; 2008 Mar; 112(11):3503-8. PubMed ID: 18303883 [TBL] [Abstract][Full Text] [Related]
7. How the stabilization of INK4 tumor suppressor 3D structure evaluated by quantum chemical and molecular mechanics calculations corresponds well with experimental results: interplay of association enthalpy, entropy, and solvation effects. Otyepka M; Sklenovský P; Horinek D; Kubar T; Hobza P J Phys Chem B; 2006 Mar; 110(9):4423-9. PubMed ID: 16509744 [TBL] [Abstract][Full Text] [Related]
8. A physically meaningful method for the comparison of potential energy functions. Alonso JL; Echenique P J Comput Chem; 2006 Jan; 27(2):238-52. PubMed ID: 16331642 [TBL] [Abstract][Full Text] [Related]
9. Inter-residue and solvent-residue interactions in proteins: a statistical study on experimental structures. Chelli R; Gervasio FL; Procacci P; Schettino V Proteins; 2004 Apr; 55(1):139-51. PubMed ID: 14997548 [TBL] [Abstract][Full Text] [Related]
10. Structural analysis of cation-pi interactions in DNA binding proteins. Gromiha MM; Santhosh C; Ahmad S Int J Biol Macromol; 2004 Jun; 34(3):203-11. PubMed ID: 15225993 [TBL] [Abstract][Full Text] [Related]
11. Stereoelectronic tuning of the structure and stability of the trp cage miniprotein. Naduthambi D; Zondlo NJ J Am Chem Soc; 2006 Sep; 128(38):12430-1. PubMed ID: 16984189 [TBL] [Abstract][Full Text] [Related]
12. Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane. Biedermannova L; E Riley K; Berka K; Hobza P; Vondrasek J Phys Chem Chem Phys; 2008 Nov; 10(42):6350-9. PubMed ID: 18972023 [TBL] [Abstract][Full Text] [Related]
13. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes. Martin J; Regad L; Etchebest C; Camproux AC Proteins; 2008 Nov; 73(3):672-89. PubMed ID: 18491388 [TBL] [Abstract][Full Text] [Related]
14. Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data. Pitonák M; Neogrády P; Cerný J; Grimme S; Hobza P Chemphyschem; 2009 Jan; 10(1):282-9. PubMed ID: 19115327 [TBL] [Abstract][Full Text] [Related]
15. Average assignment method for predicting the stability of protein mutants. Saraboji K; Gromiha MM; Ponnuswamy MN Biopolymers; 2006 May; 82(1):80-92. PubMed ID: 16453276 [TBL] [Abstract][Full Text] [Related]
16. The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy. He X; Zhang JZ J Chem Phys; 2006 May; 124(18):184703. PubMed ID: 16709127 [TBL] [Abstract][Full Text] [Related]
17. Turning a mesophilic protein into a thermophilic one: a computational approach based on 3D structural features. Basu S; Sen S J Chem Inf Model; 2009 Jul; 49(7):1741-50. PubMed ID: 19586011 [TBL] [Abstract][Full Text] [Related]
18. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. Fedorov DG; Ishida T; Uebayasi M; Kitaura K J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363 [TBL] [Abstract][Full Text] [Related]
19. All-atom contact potential approach to protein thermostability analysis. Chen C; Li L; Xiao Y Biopolymers; 2007 Jan; 85(1):28-37. PubMed ID: 16964601 [TBL] [Abstract][Full Text] [Related]
20. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Fromer M; Yanover C Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]