These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 18215012)

  • 1. Peptoidic amino- and guanidinium-carrier systems: targeted drug delivery into the cell cytosol or the nucleus.
    Schröder T; Niemeier N; Afonin S; Ulrich AS; Krug HF; Bräse S
    J Med Chem; 2008 Feb; 51(3):376-9. PubMed ID: 18215012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passage of Trojan peptoids into plant cells.
    Eggenberger K; Birtalan E; Schröder T; Bräse S; Nick P
    Chembiochem; 2009 Oct; 10(15):2504-12. PubMed ID: 19739189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-phase synthesis, bioconjugation, and toxicology of novel cationic oligopeptoids for cellular drug delivery.
    Schröder T; Schmitz K; Niemeier N; Balaban TS; Krug HF; Schepers U; Bräse S
    Bioconjug Chem; 2007; 18(2):342-54. PubMed ID: 17326607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligopeptide delivery carrier for osteoclast precursors.
    Chi B; Park SJ; Park MH; Lee SY; Jeong B
    Bioconjug Chem; 2010 Aug; 21(8):1473-8. PubMed ID: 20715852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization, and remarkable biological properties of cyclodextrins bearing guanidinoalkylamino and aminoalkylamino groups on their primary side.
    Mourtzis N; Paravatou M; Mavridis IM; Roberts ML; Yannakopoulou K
    Chemistry; 2008; 14(14):4188-200. PubMed ID: 18381718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organelle-targeted delivery of biological macromolecules using the protein transduction domain: potential applications for Peptide aptamer delivery into the nucleus.
    Yoshikawa T; Sugita T; Mukai Y; Yamanada N; Nagano K; Nabeshi H; Yoshioka Y; Nakagawa S; Abe Y; Kamada H; Tsunoda S; Tsutsumi Y
    J Mol Biol; 2008 Jul; 380(5):777-82. PubMed ID: 18571668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting a c-Myc inhibitory polypeptide to specific intracellular compartments using cell penetrating peptides.
    Bidwell GL; Davis AN; Raucher D
    J Control Release; 2009 Apr; 135(1):2-10. PubMed ID: 19095020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of carrier peptides for the delivery of nucleic acid drugs in primary cells.
    Rennert R; Neundorf I; Jahnke HG; Suchowerskyj P; Dournaud P; Robitzki A; Beck-Sickinger AG
    ChemMedChem; 2008 Feb; 3(2):241-53. PubMed ID: 18205166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of cell-penetrating peptides for cargo delivery.
    Pooga M; Langel U
    Methods Mol Biol; 2005; 298():77-89. PubMed ID: 16044541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc(II)-coordinated oligotyrosine: a new class of cell penetrating peptide.
    Johnson JR; Jiang H; Smith BD
    Bioconjug Chem; 2008 May; 19(5):1033-9. PubMed ID: 18399623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacement of a proline with silaproline causes a 20-fold increase in the cellular uptake of a Pro-rich peptide.
    Pujals S; Fernandez-Carneado J; Kogan MJ; Martinez J; Cavelier F; Giralt E
    J Am Chem Soc; 2006 Jul; 128(26):8479-83. PubMed ID: 16802813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell penetrating agents based on a polyproline helix scaffold.
    Fillon YA; Anderson JP; Chmielewski J
    J Am Chem Soc; 2005 Aug; 127(33):11798-803. PubMed ID: 16104758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic polyhedral oligomeric silsesquioxane (POSS) units as carriers for drug delivery processes.
    McCusker C; Carroll JB; Rotello VM
    Chem Commun (Camb); 2005 Feb; (8):996-8. PubMed ID: 15719094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plant cells.
    Eggenberger K; Mink C; Wadhwani P; Ulrich AS; Nick P
    Chembiochem; 2011 Jan; 12(1):132-7. PubMed ID: 21154994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial beta-peptoids by a block synthesis approach.
    Shuey SW; Delaney WJ; Shah MC; Scialdone MA
    Bioorg Med Chem Lett; 2006 Mar; 16(5):1245-8. PubMed ID: 16384703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphiphilic peptoid transporters--synthesis and evaluation.
    Vollrath SB; Fürniss D; Schepers U; Bräse S
    Org Biomol Chem; 2013 Dec; 11(47):8197-201. PubMed ID: 24145481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-mediated siRNA delivery.
    Wang XL; Xu R; Lu ZR
    J Control Release; 2009 Mar; 134(3):207-13. PubMed ID: 19135104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of an optimized positional scanning library of peptoids: identification of novel multidrug resistance reversal agents.
    Masip I; Cortés N; Abad MJ; Guardiola M; Pérez-Payá E; Ferragut J; Ferrer-Montiel A; Messeguer A
    Bioorg Med Chem; 2005 Mar; 13(6):1923-9. PubMed ID: 15727848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted charge-reversal nanoparticles for nuclear drug delivery.
    Xu P; Van Kirk EA; Zhan Y; Murdoch WJ; Radosz M; Shen Y
    Angew Chem Int Ed Engl; 2007; 46(26):4999-5002. PubMed ID: 17526044
    [No Abstract]   [Full Text] [Related]  

  • 20. Guanidinium rich peptide transporters and drug delivery.
    Wright LR; Rothbard JB; Wender PA
    Curr Protein Pept Sci; 2003 Apr; 4(2):105-24. PubMed ID: 12678850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.