These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 18215624)

  • 1. Widespread inhibition proportional to excitation controls the gain of a leech behavioral circuit.
    Baca SM; Marin-Burgin A; Wagenaar DA; Kristan WB
    Neuron; 2008 Jan; 57(2):276-289. PubMed ID: 18215624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. II. Role of identified interneurons.
    Wittenberg G; Kristan WB
    J Neurophysiol; 1992 Nov; 68(5):1693-707. PubMed ID: 1479439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation.
    Li CX; Callaway JC; Waters RS
    Exp Brain Res; 2002 Aug; 145(4):411-28. PubMed ID: 12172653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple mechanisms for integrating proprioceptive inputs that converge on the same motor pattern-generating network.
    Barrière G; Simmers J; Combes D
    J Neurosci; 2008 Aug; 28(35):8810-20. PubMed ID: 18753383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of Na+/K+ ATPase potentiates synaptic transmission in tactile sensory neurons of the leech.
    Scuri R; Lombardo P; Cataldo E; Ristori C; Brunelli M
    Eur J Neurosci; 2007 Jan; 25(1):159-67. PubMed ID: 17241277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal factors influencing the decision to swim in the medicinal leech.
    Brodfuehrer PD; Burns A
    Neurobiol Learn Mem; 1995 Mar; 63(2):192-9. PubMed ID: 7663893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological mapping of GABAA receptor-mediated inhibition in adult rat somatosensory cortex.
    Salin PA; Prince DA
    J Neurophysiol; 1996 Apr; 75(4):1589-600. PubMed ID: 8727398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of a directed behavior in the medicinal leech: implications for organizing motor output.
    Lewis JE; Kristan WB
    J Neurosci; 1998 Feb; 18(4):1571-82. PubMed ID: 9454862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serotonergic modulation of afterhyperpolarization in a neuron that contributes to learning in the leech.
    Burrell BD; Crisp KM
    J Neurophysiol; 2008 Feb; 99(2):605-16. PubMed ID: 18046001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.
    Norris BJ; Weaver AL; Wenning A; García PS; Calabrese RL
    J Neurophysiol; 2007 Nov; 98(5):2983-91. PubMed ID: 17728387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A classic model animal in the 21st century: recent lessons from the leech nervous system.
    Wagenaar DA
    J Exp Biol; 2015 Nov; 218(Pt 21):3353-9. PubMed ID: 26538172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal activity in the monkey motor thalamus during bicuculline-induced dystonia.
    Macia F; Escola L; Guehl D; Michelet T; Bioulac B; Burbaud P
    Eur J Neurosci; 2002 Apr; 15(8):1353-62. PubMed ID: 11994129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical imaging of neuronal populations during decision-making.
    Briggman KL; Abarbanel HD; Kristan WB
    Science; 2005 Feb; 307(5711):896-901. PubMed ID: 15705844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms.
    Cymbalyuk GS; Gaudry Q; Masino MA; Calabrese RL
    J Neurosci; 2002 Dec; 22(24):10580-92. PubMed ID: 12486150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional interneurons in behavioral circuits of the medicinal leech.
    Kristan WB; Wittenberg G; Nusbaum MP; Stern-Tomlinson W
    Experientia; 1988 May; 44(5):383-9. PubMed ID: 3286283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A local GABAergic system within rat trigeminal ganglion cells.
    Hayasaki H; Sohma Y; Kanbara K; Maemura K; Kubota T; Watanabe M
    Eur J Neurosci; 2006 Feb; 23(3):745-57. PubMed ID: 16487155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model of intersegmental coordination in the leech heartbeat neuronal network.
    Hill AA; Masino MA; Calabrese RL
    J Neurophysiol; 2002 Mar; 87(3):1586-602. PubMed ID: 11877528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The computational leech.
    Lockery SR; Sejnowski TJ
    Trends Neurosci; 1993 Jul; 16(7):283-90. PubMed ID: 7689773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicotinic acetylcholine receptor subtypes involved in facilitation of GABAergic inhibition in mouse superficial superior colliculus.
    Endo T; Yanagawa Y; Obata K; Isa T
    J Neurophysiol; 2005 Dec; 94(6):3893-902. PubMed ID: 16107532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two forms of sensitization of the local bending reflex of the medicinal leech.
    Lockery SR; Kristan WB
    J Comp Physiol A; 1991 Feb; 168(2):165-77. PubMed ID: 2046043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.