BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 18215735)

  • 1. Iron chelators can protect against oxidative stress through ferryl heme reduction.
    Reeder BJ; Hider RC; Wilson MT
    Free Radic Biol Med; 2008 Feb; 44(3):264-73. PubMed ID: 18215735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Desferrioxamine inhibits production of cytotoxic heme to protein cross-linked myoglobin: a mechanism to protect against oxidative stress without iron chelation.
    Reeder BJ; Wilson MT
    Chem Res Toxicol; 2005 Jun; 18(6):1004-11. PubMed ID: 15962935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of heme protein redox cycling: reduction of ferryl heme by iron chelators and the role of a novel through-protein electron transfer pathway.
    Roberts LJ
    Free Radic Biol Med; 2008 Feb; 44(3):257-60. PubMed ID: 18067870
    [No Abstract]   [Full Text] [Related]  

  • 4. Tyrosine as a redox-active center in electron transfer to ferryl heme in globins.
    Reeder BJ; Cutruzzola F; Bigotti MG; Hider RC; Wilson MT
    Free Radic Biol Med; 2008 Feb; 44(3):274-83. PubMed ID: 18215736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of clinically used and experimental iron chelators for protection against oxidative stress-induced cellular injury.
    Bendova P; Mackova E; Haskova P; Vavrova A; Jirkovsky E; Sterba M; Popelova O; Kalinowski DS; Kovarikova P; Vavrova K; Richardson DR; Simunek T
    Chem Res Toxicol; 2010 Jun; 23(6):1105-14. PubMed ID: 20521781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of various iron chelators used in clinical practice as protecting agents against catecholamine-induced oxidative injury and cardiotoxicity.
    Hašková P; Koubková L; Vávrová A; Macková E; Hrušková K; Kovaříková P; Vávrová K; Simůnek T
    Toxicology; 2011 Nov; 289(2-3):122-31. PubMed ID: 21864640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311.
    Chaston TB; Lovejoy DB; Watts RN; Richardson DR
    Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new sensitive assay reveals that hemoglobin is oxidatively modified in vivo.
    Vollaard NB; Reeder BJ; Shearman JP; Menu P; Wilson MT; Cooper CE
    Free Radic Biol Med; 2005 Nov; 39(9):1216-28. PubMed ID: 16214037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative treatment paradigm for thalassemia using iron chelators.
    Szuber N; Buss JL; Soe-Lin S; Felfly H; Trudel M; Ponka P
    Exp Hematol; 2008 Jul; 36(7):773-85. PubMed ID: 18456387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine can protect against oxidative stress through ferryl hemoglobin reduction.
    Lu N; He Y; Chen C; Tian R; Xiao Q; Peng YY
    Toxicol In Vitro; 2014 Aug; 28(5):847-55. PubMed ID: 24698734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of low-density lipoprotein by hemoglobin stems from a heme-initiated globin radical: antioxidant role of haptoglobin.
    Miller YI; Altamentova SM; Shaklai N
    Biochemistry; 1997 Oct; 36(40):12189-98. PubMed ID: 9315856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia.
    Fibach E; Rachmilewitz EA
    Ann N Y Acad Sci; 2010 Aug; 1202():10-6. PubMed ID: 20712766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of low-density lipoprotein oxidation by hemoglobin-derived iron.
    Grinshtein N; Bamm VV; Tsemakhovich VA; Shaklai N
    Biochemistry; 2003 Jun; 42(23):6977-85. PubMed ID: 12795592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of glutathione, Trolox and desferrioxamine on hemoglobin-induced protein oxidative damage: anti-oxidant or pro-oxidant?
    Lu N; Chen W; Peng YY
    Eur J Pharmacol; 2011 Jun; 659(2-3):95-101. PubMed ID: 21419762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection against hydrogen peroxide-mediated cytotoxicity in Friedreich's ataxia fibroblasts using novel iron chelators of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone class.
    Lim CK; Kalinowski DS; Richardson DR
    Mol Pharmacol; 2008 Jul; 74(1):225-35. PubMed ID: 18424550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and biological evaluation of lipophilic iron chelators as protective agents from oxidative stress.
    Yavin E; Kikkiri R; Gil S; Arad-Yellin R; Yavin E; Shanzer A
    Org Biomol Chem; 2005 Aug; 3(15):2685-7. PubMed ID: 16032345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemoglobin and myoglobin associated oxidative stress: from molecular mechanisms to disease States.
    Reeder BJ; Wilson MT
    Curr Med Chem; 2005; 12(23):2741-51. PubMed ID: 16305469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, physicochemical properties, and evaluation of N-substituted-2-alkyl-3-hydroxy-4(1H)-pyridinones.
    Rai BL; Dekhordi LS; Khodr H; Jin Y; Liu Z; Hider RC
    J Med Chem; 1998 Aug; 41(18):3347-59. PubMed ID: 9719587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the ascorbate-glutathione antioxidant system.
    Simoni J; Villanueva-Meyer J; Simoni G; Moeller JF; Wesson DE
    Artif Organs; 2009 Feb; 33(2):115-26. PubMed ID: 19178455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance.
    Liu G; Men P; Harris PL; Rolston RK; Perry G; Smith MA
    Neurosci Lett; 2006 Oct; 406(3):189-93. PubMed ID: 16919875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.