BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18215736)

  • 1. Tyrosine as a redox-active center in electron transfer to ferryl heme in globins.
    Reeder BJ; Cutruzzola F; Bigotti MG; Hider RC; Wilson MT
    Free Radic Biol Med; 2008 Feb; 44(3):274-83. PubMed ID: 18215736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of heme protein redox cycling: reduction of ferryl heme by iron chelators and the role of a novel through-protein electron transfer pathway.
    Roberts LJ
    Free Radic Biol Med; 2008 Feb; 44(3):257-60. PubMed ID: 18067870
    [No Abstract]   [Full Text] [Related]  

  • 3. Iron chelators can protect against oxidative stress through ferryl heme reduction.
    Reeder BJ; Hider RC; Wilson MT
    Free Radic Biol Med; 2008 Feb; 44(3):264-73. PubMed ID: 18215735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer from HiPIP to the photooxidized tetraheme cytochrome subunit of Allochromatium vinosum reaction center: new insights from site-directed mutagenesis and computational studies.
    Venturoli G; Mamedov MD; Mansy SS; Musiani F; Strocchi M; Francia F; Semenov AY; Cowan JA; Ciurli S
    Biochemistry; 2004 Jan; 43(2):437-45. PubMed ID: 14717598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine residues as redox cofactors in human hemoglobin: implications for engineering nontoxic blood substitutes.
    Reeder BJ; Grey M; Silaghi-Dumitrescu RL; Svistunenko DA; Bülow L; Cooper CE; Wilson MT
    J Biol Chem; 2008 Nov; 283(45):30780-7. PubMed ID: 18728007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of molecular dynamics on the photoinduced electron transfer in eosin-myoglobin complex].
    Fogel' VR; Pastukhov AV; Psikha BL; Kotel'nikov AI
    Biofizika; 1997; 42(5):1008-14. PubMed ID: 9410026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protonation of two adjacent tyrosine residues influences the reduction of cytochrome c by diphenylacetaldehyde: a possible mechanism to select the reducer agent of heme iron.
    Rinaldi TA; Tersariol IL; Dyszy FH; Prado FM; Nascimento OR; Di Mascio P; Nantes IL
    Free Radic Biol Med; 2004 Mar; 36(6):802-10. PubMed ID: 14990358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and electrochemical studies of horse myoglobin in dimethyl sulfoxide.
    Li QC; Mabrouk PA
    J Biol Inorg Chem; 2003 Jan; 8(1-2):83-94. PubMed ID: 12459902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoreduction of ferryl myoglobin: discrimination among the three tyrosine and two tryptophan residues as electron donors.
    Lardinois OM; Ortiz de Montellano PR
    Biochemistry; 2004 Apr; 43(15):4601-10. PubMed ID: 15078107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heme reduction by intramolecular electron transfer in cysteine mutant myoglobin under carbon monoxide atmosphere.
    Hirota S; Azuma K; Fukuba M; Kuroiwa S; Funasaki N
    Biochemistry; 2005 Aug; 44(30):10322-7. PubMed ID: 16042409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton-coupled electron transfer and tyrosine D of photosystem II.
    Jenson DL; Evans A; Barry BA
    J Phys Chem B; 2007 Nov; 111(43):12599-604. PubMed ID: 17924690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxynitrite-mediated heme oxidation and protein modification of native and chemically modified hemoglobins.
    Alayash AI; Ryan BA; Cashon RE
    Arch Biochem Biophys; 1998 Jan; 349(1):65-73. PubMed ID: 9439583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of low-density lipoprotein oxidation by hemoglobin-derived iron.
    Grinshtein N; Bamm VV; Tsemakhovich VA; Shaklai N
    Biochemistry; 2003 Jun; 42(23):6977-85. PubMed ID: 12795592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox reactions of the non-heme iron in photosystem II: an EPR spectroscopic study.
    McEvoy JP; Brudvig GW
    Biochemistry; 2008 Dec; 47(50):13394-403. PubMed ID: 19053286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-transfer chemistry of Ru-linker-(heme)-modified myoglobin: rapid intraprotein reduction of a photogenerated porphyrin cation radical.
    Immoos CE; Di Bilio AJ; Cohen MS; Van der Veer W; Gray HB; Farmer PJ
    Inorg Chem; 2004 Jun; 43(12):3593-6. PubMed ID: 15180412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of high-oxidation states of myoglobin in the nanosecond time-scale by laser photoionization.
    Candeias LP; Steenken S
    Photochem Photobiol; 1998 Jul; 68(1):39-43. PubMed ID: 9679449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of Trolox C, a water-soluble vitamin E analog, with ferrylmyoglobin: reduction of the oxoferryl moiety.
    Giulivi C; Romero FJ; Cadenas E
    Arch Biochem Biophys; 1992 Dec; 299(2):302-12. PubMed ID: 1444470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic docking of cytochrome b5 with myoglobin and alpha-hemoglobin: heme-neutralization "squares" and the binding of electron-transfer-reactive configurations.
    Wheeler KE; Nocek JM; Cull DA; Yatsunyk LA; Rosenzweig AC; Hoffman BM
    J Am Chem Soc; 2007 Apr; 129(13):3906-17. PubMed ID: 17343378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histidine cycle mechanism for the concerted proton/electron transfer from ascorbate to the cytosolic haem b centre of cytochrome b561: a unique machinery for the biological transmembrane electron transfer.
    Nakanishi N; Takeuchi F; Tsubaki M
    J Biochem; 2007 Nov; 142(5):553-60. PubMed ID: 17905810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.