These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18215833)

  • 1. Ultrasonic texture motion analysis: theory and simulation.
    Meunier J; Bertrand M
    IEEE Trans Med Imaging; 1995; 14(2):293-300. PubMed ID: 18215833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue motion assessment from 3D echographic speckle tracking.
    Meunier J
    Phys Med Biol; 1998 May; 43(5):1241-54. PubMed ID: 9623653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speckle-motion artifact under tissue shearing.
    Maurice RL; Bertrand M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):584-94. PubMed ID: 18238459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral blood flow velocity estimation based on ultrasound speckle size change with scan velocity.
    Xu T; Bashford GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2695-703. PubMed ID: 21156365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for angle independent ultrasonic imaging of blood flow and tissue motion.
    Bohs LN; Trahey GE
    IEEE Trans Biomed Eng; 1991 Mar; 38(3):280-6. PubMed ID: 2066142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced peak-hopping artifacts in ultrasonic strain estimation using the Viterbi algorithm.
    Petrank Y; Huang L; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1359-67. PubMed ID: 19574147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of 2-D speckle tracking and tissue Doppler imaging in an isolated rabbit heart model.
    Jia C; Olafsson R; Huang SW; Kolias TJ; Kim K; Rubin JM; Xie H; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2491-502. PubMed ID: 21041136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speckle decorrelation due to two-dimensional flow gradients.
    Friemel BH; Bohs LN; Nightingale KR; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):317-27. PubMed ID: 18244183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a real-time simulation of ultrasound image sequences based on a 3-D set of moving scatterers.
    Marion A; Vray D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2167-79. PubMed ID: 19942504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation analysis of three-dimensional strain imaging using ultrasound two-dimensional array transducers.
    Rao M; Varghese T
    J Acoust Soc Am; 2008 Sep; 124(3):1858-65. PubMed ID: 19045676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model.
    Swillens A; Segers P; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):327-39. PubMed ID: 20178899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lagrangian speckle model and tissue-motion estimation--theory.
    Maurice RL; Bertrand M
    IEEE Trans Med Imaging; 1999 Jul; 18(7):593-603. PubMed ID: 10504093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 May; 35(5):796-812. PubMed ID: 19282094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilevel and motion model-based ultrasonic speckle tracking algorithms.
    Yeung F; Levinson SF; Parker KJ
    Ultrasound Med Biol; 1998 Mar; 24(3):427-41. PubMed ID: 9587997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic axial strain measurement for lateral tissue deformation.
    Sumi C
    Ultrasound Med Biol; 2007 Nov; 33(11):1830-7. PubMed ID: 17673360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ensemble tracking for 2D vector velocity measurement: Experimental and initial clinical results.
    Bohs LN; Geiman BJ; Anderson ME; Breit SM; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):912-24. PubMed ID: 18244246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principal component analysis of shear strain effects.
    Chen H; Varghese T
    Ultrasonics; 2009 May; 49(4-5):472-83. PubMed ID: 19201435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Echographic image mean gray level changes with tissue dynamics: a system-based model study.
    Meunier J; Bertrand M
    IEEE Trans Biomed Eng; 1995 Apr; 42(4):403-10. PubMed ID: 7729839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards pointwise motion tracking in echocardiographic image sequences--comparing the reliability of different features for speckle tracking.
    Yu W; Yan P; Sinusas AJ; Thiele K; Duncan JS
    Med Image Anal; 2006 Aug; 10(4):495-508. PubMed ID: 16574465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.