These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 18216188)

  • 1. Homosynaptic long-term synaptic potentiation of the "winner" climbing fiber synapse in developing Purkinje cells.
    Bosman LW; Takechi H; Hartmann J; Eilers J; Konnerth A
    J Neurosci; 2008 Jan; 28(4):798-807. PubMed ID: 18216188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional plasticity at developing climbing fiber-Purkinje neuron synapses.
    Ohtsuki G; Hirano T
    Eur J Neurosci; 2008 Dec; 28(12):2393-400. PubMed ID: 19032589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse.
    Belmeguenai A; Botta P; Weber JT; Carta M; De Ruiter M; De Zeeuw CI; Valenzuela CF; Hansel C
    J Neurophysiol; 2008 Dec; 100(6):3167-74. PubMed ID: 18922952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-dependent plasticity of developing climbing fiber-Purkinje cell synapses.
    Bosman LW; Konnerth A
    Neuroscience; 2009 Sep; 162(3):612-23. PubMed ID: 19302832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term depression of the cerebellar climbing fiber--Purkinje neuron synapse.
    Hansel C; Linden DJ
    Neuron; 2000 May; 26(2):473-82. PubMed ID: 10839365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell type-specific plasticity at parallel fiber synapses onto Purkinje cells in the posterior caudal lobe of the mormyrid fish cerebellum.
    Zhang Y; Magnus G; Han VZ
    J Neurophysiol; 2018 Aug; 120(2):644-661. PubMed ID: 29668384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum.
    Andjus PR; Zhu L; Cesa R; Carulli D; Strata P
    Neuroscience; 2003; 121(3):563-72. PubMed ID: 14568018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of long-term depression and climbing fiber territory by glutamate receptor delta2 at parallel fiber synapses through its C-terminal domain in cerebellar Purkinje cells.
    Uemura T; Kakizawa S; Yamasaki M; Sakimura K; Watanabe M; Iino M; Mishina M
    J Neurosci; 2007 Oct; 27(44):12096-108. PubMed ID: 17978051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control.
    Coesmans M; Weber JT; De Zeeuw CI; Hansel C
    Neuron; 2004 Nov; 44(4):691-700. PubMed ID: 15541316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum.
    Piochon C; Levenes C; Ohtsuki G; Hansel C
    J Neurosci; 2010 Nov; 30(45):15330-5. PubMed ID: 21068337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depression of parallel and climbing fiber transmission to Bergmann glia is input specific and correlates with increased precision of synaptic transmission.
    Balakrishnan S; Bellamy TC
    Glia; 2009 Mar; 57(4):393-401. PubMed ID: 18837050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical model of the cerebellar-olivary system I: self-regulating equilibrium of climbing fiber activity.
    Kenyon GT; Medina JF; Mauk MD
    J Comput Neurosci; 1998 Mar; 5(1):17-33. PubMed ID: 9540047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical period for activity-dependent synapse elimination in developing cerebellum.
    Kakizawa S; Yamasaki M; Watanabe M; Kano M
    J Neurosci; 2000 Jul; 20(13):4954-61. PubMed ID: 10864953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 'creeper stage' in cerebellar climbing fiber synaptogenesis precedes the 'pericellular nest'--ultrastructural evidence with parvalbumin immunocytochemistry.
    Chedotal A; Sotelo C
    Brain Res Dev Brain Res; 1993 Dec; 76(2):207-20. PubMed ID: 8149587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells.
    Kano M; Rexhausen U; Dreessen J; Konnerth A
    Nature; 1992 Apr; 356(6370):601-4. PubMed ID: 1313949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential susceptibility to synaptic plasticity reveals a functional specialization of ascending axon and parallel fiber synapses to cerebellar Purkinje cells.
    Sims RE; Hartell NA
    J Neurosci; 2006 May; 26(19):5153-9. PubMed ID: 16687506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The density of AMPA receptors activated by a transmitter quantum at the climbing fibre-Purkinje cell synapse in immature rats.
    Momiyama A; Silver RA; Hausser M; Notomi T; Wu Y; Shigemoto R; Cull-Candy SG
    J Physiol; 2003 May; 549(Pt 1):75-92. PubMed ID: 12665613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P/Q-type Ca2+ channel alpha1A regulates synaptic competition on developing cerebellar Purkinje cells.
    Miyazaki T; Hashimoto K; Shin HS; Kano M; Watanabe M
    J Neurosci; 2004 Feb; 24(7):1734-43. PubMed ID: 14973254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation.
    Inagaki K; Hirata Y
    Cerebellum; 2017 Aug; 16(4):827-839. PubMed ID: 28444617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in transmission properties and susceptibility to long-term depression reveal functional specialization of ascending axon and parallel fiber synapses to Purkinje cells.
    Sims RE; Hartell NA
    J Neurosci; 2005 Mar; 25(12):3246-57. PubMed ID: 15788782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.