These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 18216233)

  • 1. Analysis of between-trial and within-trial neural spiking dynamics.
    Czanner G; Eden UT; Wirth S; Yanike M; Suzuki WA; Brown EN
    J Neurophysiol; 2008 May; 99(5):2672-93. PubMed ID: 18216233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects.
    Truccolo W; Eden UT; Fellows MR; Donoghue JP; Brown EN
    J Neurophysiol; 2005 Feb; 93(2):1074-89. PubMed ID: 15356183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Empirical Model for Reliable Spiking Activity.
    Wang W; Tripathy SJ; Padmanabhan K; Urban NN; Kass RE
    Neural Comput; 2015 Aug; 27(8):1609-23. PubMed ID: 26079749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A point process model for auditory neurons considering both their intrinsic dynamics and the spectrotemporal properties of an extrinsic signal.
    Plourde E; Delgutte B; Brown EN
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1507-10. PubMed ID: 21317068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The time-rescaling theorem and its application to neural spike train data analysis.
    Brown EN; Barbieri R; Ventura V; Kass RE; Frank LM
    Neural Comput; 2002 Feb; 14(2):325-46. PubMed ID: 11802915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and analysis of non-Poisson stimulus-response models of neural spiking activity.
    Barbieri R; Quirk MC; Frank LM; Wilson MA; Brown EN
    J Neurosci Methods; 2001 Jan; 105(1):25-37. PubMed ID: 11166363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A procedure for testing across-condition rhythmic spike-field association change.
    Lepage KQ; Gregoriou GG; Kramer MA; Aoi M; Gotts SJ; Eden UT; Desimone R
    J Neurosci Methods; 2013 Feb; 213(1):43-62. PubMed ID: 23164959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fitting a stochastic spiking model to neuronal current injection data.
    Shinomoto S
    Neural Netw; 2010 Aug; 23(6):764-9. PubMed ID: 20478693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task-related responses of monkey medullary dorsal horn neurons.
    Duncan GH; Bushnell MC; Bates R; Dubner R
    J Neurophysiol; 1987 Jan; 57(1):289-310. PubMed ID: 3559677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlates of reward-predictive value in learning-related hippocampal neural activity.
    Okatan M
    Hippocampus; 2009 May; 19(5):487-506. PubMed ID: 19123250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs.
    Gerhard F; Deger M; Truccolo W
    PLoS Comput Biol; 2017 Feb; 13(2):e1005390. PubMed ID: 28234899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copula regression analysis of simultaneously recorded frontal eye field and inferotemporal spiking activity during object-based working memory.
    Hu M; Clark KL; Gong X; Noudoost B; Li M; Moore T; Liang H
    J Neurosci; 2015 Jun; 35(23):8745-57. PubMed ID: 26063909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a Nonstationary Computational Framework With Application to Modeling Dynamic Modulations in Neural Spiking Responses.
    Akbarian A; Niknam K; Parsa M; Clark K; Noudoost B; Nategh N
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):241-253. PubMed ID: 29035203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noisy Juxtacellular Stimulation In Vivo Leads to Reliable Spiking and Reveals High-Frequency Coding in Single Neurons.
    Doose J; Doron G; Brecht M; Lindner B
    J Neurosci; 2016 Oct; 36(43):11120-11132. PubMed ID: 27798191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical inference for assessing functional connectivity of neuronal ensembles with sparse spiking data.
    Chen Z; Putrino DF; Ghosh S; Barbieri R; Brown EN
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):121-35. PubMed ID: 20937583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A common goodness-of-fit framework for neural population models using marked point process time-rescaling.
    Tao L; Weber KE; Arai K; Eden UT
    J Comput Neurosci; 2018 Oct; 45(2):147-162. PubMed ID: 30298220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive inverse control of neural spatiotemporal spike patterns with a reproducing kernel Hilbert space (RKHS) framework.
    Li L; Park IM; Brockmeier A; Chen B; Seth S; Francis JT; Sanchez JC; Príncipe JC
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):532-43. PubMed ID: 22868633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flexible likelihood approach for predicting neural spiking activity from oscillatory phase.
    Johnson TD; Coleman TP; Rangel LM
    J Neurosci Methods; 2019 Jan; 311():307-317. PubMed ID: 30367887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential optimal design of neurophysiology experiments.
    Lewi J; Butera R; Paninski L
    Neural Comput; 2009 Mar; 21(3):619-87. PubMed ID: 18928364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the spiking dynamics of subthalamic nucleus neurons in Parkinson's disease using generalized linear models.
    Eden UT; Gale JT; Amirnovin R; Eskandar EN
    Front Integr Neurosci; 2012; 6():28. PubMed ID: 22723771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.