These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

704 related articles for article (PubMed ID: 18216234)

  • 1. Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse.
    Stasheff SF
    J Neurophysiol; 2008 Mar; 99(3):1408-21. PubMed ID: 18216234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental time course distinguishes changes in spontaneous and light-evoked retinal ganglion cell activity in rd1 and rd10 mice.
    Stasheff SF; Shankar M; Andrews MP
    J Neurophysiol; 2011 Jun; 105(6):3002-9. PubMed ID: 21389300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-driven retinal ganglion cell responses in blind rd mice after neural retinal transplantation.
    Radner W; Sadda SR; Humayun MS; Suzuki S; Melia M; Weiland J; de Juan E
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1057-65. PubMed ID: 11274086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular responses to photoreceptor death in the rd1 mouse model of retinal degeneration.
    Punzo C; Cepko C
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):849-57. PubMed ID: 17251487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retardation of photoreceptor degeneration in the detached retina of rd1 mouse.
    Kaneko H; Nishiguchi KM; Nakamura M; Kachi S; Terasaki H
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):781-7. PubMed ID: 18235028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Akt activation in the photoreceptors of normal and rd1 mice.
    Johnson LE; van Veen T; Ekström PA
    Cell Tissue Res; 2005 May; 320(2):213-22. PubMed ID: 15789220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping retinal degeneration and loss-of-function in Rd-FTL mice.
    Greferath U; Goh HC; Chua PY; Astrand E; O'Brien EE; Fletcher EL; Murphy M
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5955-64. PubMed ID: 19661224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina.
    Delyfer MN; Forster V; Neveux N; Picaud S; Léveillard T; Sahel JA
    Mol Vis; 2005 Sep; 11():688-96. PubMed ID: 16163266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased spontaneous retinal ganglion cell activity in rd mice after neural retinal transplantation.
    Radner W; Sadda SR; Humayun MS; Suzuki S; de Juan E
    Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):3053-8. PubMed ID: 12202529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of retinal ganglion cells in wild-type and rd1 mice through electrical stimulation of the retinal neural network.
    Jensen RJ; Rizzo JF
    Vision Res; 2008 Jun; 48(14):1562-8. PubMed ID: 18555890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and degeneration of retina in rds mutant mice: light microscopy.
    Sanyal S; De Ruiter A; Hawkins RK
    J Comp Neurol; 1980 Nov; 194(1):193-207. PubMed ID: 7440795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical stimulation in normal and retinal degeneration (rd1) isolated mouse retina.
    O'Hearn TM; Sadda SR; Weiland JD; Maia M; Margalit E; Humayun MS
    Vision Res; 2006 Oct; 46(19):3198-204. PubMed ID: 16723150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Late histological and functional changes in the P23H rat retina after photoreceptor loss.
    Kolomiets B; Dubus E; Simonutti M; Rosolen S; Sahel JA; Picaud S
    Neurobiol Dis; 2010 Apr; 38(1):47-58. PubMed ID: 20060471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable phenotypic expressivity in inbred retinal degeneration mouse lines: A comparative study of C3H/HeOu and FVB/N rd1 mice.
    van Wyk M; Schneider S; Kleinlogel S
    Mol Vis; 2015; 21():811-27. PubMed ID: 26283863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melanopsin-dependent persistence and photopotentiation of murine pupillary light responses.
    Zhu Y; Tu DC; Denner D; Shane T; Fitzgerald CM; Van Gelder RN
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1268-75. PubMed ID: 17325172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells.
    Thyagarajan S; van Wyk M; Lehmann K; Löwel S; Feng G; Wässle H
    J Neurosci; 2010 Jun; 30(26):8745-58. PubMed ID: 20592196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual response properties of retinal ganglion cells in the royal college of surgeons dystrophic rat.
    Pu M; Xu L; Zhang H
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3579-85. PubMed ID: 16877432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calpain is activated in degenerating photoreceptors in the rd1 mouse.
    Paquet-Durand F; Azadi S; Hauck SM; Ueffing M; van Veen T; Ekström P
    J Neurochem; 2006 Feb; 96(3):802-14. PubMed ID: 16405498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caspase-1 ablation protects photoreceptors in a model of autosomal dominant retinitis pigmentosa.
    Samardzija M; Wenzel A; Thiersch M; Frigg R; Remé C; Grimm C
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5181-90. PubMed ID: 17122101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intravitreous injection of PLGA microspheres encapsulating GDNF promotes the survival of photoreceptors in the rd1/rd1 mouse.
    Andrieu-Soler C; Aubert-Pouëssel A; Doat M; Picaud S; Halhal M; Simonutti M; Venier-Julienne MC; Benoit JP; Behar-Cohen F
    Mol Vis; 2005 Nov; 11():1002-11. PubMed ID: 16319820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.