BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 18216396)

  • 1. Median absolute deviation to improve hit selection for genome-scale RNAi screens.
    Chung N; Zhang XD; Kreamer A; Locco L; Kuan PF; Bartz S; Linsley PS; Ferrer M; Strulovici B
    J Biomol Screen; 2008 Feb; 13(2):149-58. PubMed ID: 18216396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient and fully automated high-throughput transfection method for genome-scale siRNA screens.
    Chung N; Locco L; Huff KW; Bartz S; Linsley PS; Ferrer M; Strulovici B
    J Biomol Screen; 2008 Feb; 13(2):142-8. PubMed ID: 18216392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust statistical methods for hit selection in RNA interference high-throughput screening experiments.
    Zhang XD; Yang XC; Chung N; Gates A; Stec E; Kunapuli P; Holder DJ; Ferrer M; Espeseth AS
    Pharmacogenomics; 2006 Apr; 7(3):299-309. PubMed ID: 16610941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of SSMD-based false discovery and false nondiscovery rates in genome-scale RNAi screens.
    Zhang XD; Lacson R; Yang R; Marine SD; McCampbell A; Toolan DM; Hare TR; Kajdas J; Berger JP; Holder DJ; Heyse JF; Ferrer M
    J Biomol Screen; 2010 Oct; 15(9):1123-31. PubMed ID: 20852024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Error rates and powers in genome-scale RNAi screens.
    Zhang XD; Marine SD; Ferrer M
    J Biomol Screen; 2009 Mar; 14(3):230-8. PubMed ID: 19211781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An effective method for controlling false discovery and false nondiscovery rates in genome-scale RNAi screens.
    Zhang XD
    J Biomol Screen; 2010 Oct; 15(9):1116-22. PubMed ID: 20855561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of strictly standardized mean difference for hit selection in primary RNA interference high-throughput screening experiments.
    Zhang XD; Ferrer M; Espeseth AS; Marine SD; Stec EM; Crackower MA; Holder DJ; Heyse JF; Strulovici B
    J Biomol Screen; 2007 Jun; 12(4):497-509. PubMed ID: 17435171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays.
    Zhang XD
    J Biomol Screen; 2007 Aug; 12(5):645-55. PubMed ID: 17517904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing, optimizing, and implementing high-throughput siRNA genomic screening with glioma cells for the discovery of survival genes and novel drug targets.
    Thaker NG; McDonald PR; Zhang F; Kitchens CA; Shun TY; Pollack IF; Lazo JS
    J Neurosci Methods; 2010 Jan; 185(2):204-12. PubMed ID: 19782703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oncology studies using siRNA libraries: the dawn of RNAi-based genomics.
    Sachse C; Echeverri CJ
    Oncogene; 2004 Nov; 23(51):8384-91. PubMed ID: 15517020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput RNAi screening in mammalian cells with esiRNAs.
    Theis M; Buchholz F
    Methods; 2011 Apr; 53(4):424-9. PubMed ID: 21185384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common seed analysis to identify off-target effects in siRNA screens.
    Marine S; Bahl A; Ferrer M; Buehler E
    J Biomol Screen; 2012 Mar; 17(3):370-8. PubMed ID: 22086724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNAi microarray analysis in cultured mammalian cells.
    Mousses S; Caplen NJ; Cornelison R; Weaver D; Basik M; Hautaniemi S; Elkahloun AG; Lotufo RA; Choudary A; Dougherty ER; Suh E; Kallioniemi O
    Genome Res; 2003 Oct; 13(10):2341-7. PubMed ID: 14525932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying HIV-1 host cell factors by genome-scale RNAi screening.
    Pache L; König R; Chanda SK
    Methods; 2011 Jan; 53(1):3-12. PubMed ID: 20654720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput RNAi screening for the identification of novel targets.
    Henderson MC; Azorsa DO
    Methods Mol Biol; 2013; 986():89-95. PubMed ID: 23436407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput selection of effective RNAi probes for gene silencing.
    Kumar R; Conklin DS; Mittal V
    Genome Res; 2003 Oct; 13(10):2333-40. PubMed ID: 14525931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced HTS hit selection via a local hit rate analysis.
    Posner BA; Xi H; Mills JE
    J Chem Inf Model; 2009 Oct; 49(10):2202-10. PubMed ID: 19795815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3' UTR seed matches, but not overall identity, are associated with RNAi off-targets.
    Birmingham A; Anderson EM; Reynolds A; Ilsley-Tyree D; Leake D; Fedorov Y; Baskerville S; Maksimova E; Robinson K; Karpilow J; Marshall WS; Khvorova A
    Nat Methods; 2006 Mar; 3(3):199-204. PubMed ID: 16489337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput RNA interference strategies for target discovery and validation by using synthetic short interfering RNAs: functional genomics investigations of biological pathways.
    Sachse C; Krausz E; Krönke A; Hannus M; Walsh A; Grabner A; Ovcharenko D; Dorris D; Trudel C; Sönnichsen B; Echeverri CJ
    Methods Enzymol; 2005; 392():242-77. PubMed ID: 15644186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput siRNA-based functional target validation.
    Xin H; Bernal A; Amato FA; Pinhasov A; Kauffman J; Brenneman DE; Derian CK; Andrade-Gordon P; Plata-Salamán CR; Ilyin SE
    J Biomol Screen; 2004 Jun; 9(4):286-93. PubMed ID: 15191645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.