These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 18216911)
1. Simplified calculations for accuracy of a lidar dial system to measure atmospheric H2O vapor and temperature. Braun WC Appl Opt; 1985 Jan; 24(1):109-17. PubMed ID: 18216911 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements. Refaat TF; Singh UN; Yu J; Petros M; Ismail S; Kavaya MJ; Davis KJ Appl Opt; 2015 Feb; 54(6):1387-98. PubMed ID: 25968204 [TBL] [Abstract][Full Text] [Related]
3. Demonstration of a combined differential absorption and high spectral resolution lidar for profiling atmospheric temperature. Stillwell RA; Spuler SM; Hayman M; Repasky KS; Bunn CE Opt Express; 2020 Jan; 28(1):71-93. PubMed ID: 32118942 [TBL] [Abstract][Full Text] [Related]
4. New methods of data calibration for high power-aperture lidar. Guan S; Yang G; Chang Q; Cheng X; Yang Y; Gong S; Wang J Opt Express; 2013 Mar; 21(6):7768-85. PubMed ID: 23546158 [TBL] [Abstract][Full Text] [Related]
5. Compact and efficient 1064 nm up-conversion atmospheric lidar. Chen Q; Mao S; Yin Z; Yi Y; Li X; Wang A; Wang X Opt Express; 2023 Jul; 31(15):23931-23943. PubMed ID: 37475233 [TBL] [Abstract][Full Text] [Related]
6. Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms. Refaat TF; Ismail S; Nehrir AR; Hair JW; Crawford JH; Leifer I; Shuman T Opt Express; 2013 Dec; 21(25):30415-32. PubMed ID: 24514619 [TBL] [Abstract][Full Text] [Related]
7. Water vapor differential absorption lidar development and evaluation. Browell EV; Wilkerson TD; McIlrath TJ Appl Opt; 1979 Oct; 18(20):3474-83. PubMed ID: 20216627 [TBL] [Abstract][Full Text] [Related]
9. Future Performance of Ground-Based and Airborne Water-Vapor Differential Absorption Lidar. II. Simulations of the Precision of a Near-Infrared, High-Power System. Wulfmeyer V; Walther C Appl Opt; 2001 Oct; 40(30):5321-36. PubMed ID: 18364812 [TBL] [Abstract][Full Text] [Related]
10. Modeling the performance of a diode laser-based (DLB) micro-pulse differential absorption lidar (MPD) for temperature profiling in the lower troposphere. Repasky KS; Bunn CE; Hayman M; Stillwell RA; Spuler SM Opt Express; 2019 Nov; 27(23):33543-33563. PubMed ID: 31878421 [TBL] [Abstract][Full Text] [Related]
11. Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements. Vaidyanathan M; Killinger DK Appl Opt; 1994 Nov; 33(33):7747-53. PubMed ID: 20962985 [TBL] [Abstract][Full Text] [Related]
12. Broadband continuous-wave differential absorption lidar for atmospheric remote sensing of water vapor. Yu J; Cheng Y; Kong Z; Song J; Chang Y; Liu K; Gong Z; Mei L Opt Express; 2024 Jan; 32(3):3046-3061. PubMed ID: 38297536 [TBL] [Abstract][Full Text] [Related]
13. Perturbative solution to the two-component atmosphere DIAL equation for improving the accuracy of the retrieved absorption coefficient. Bunn CE; Repasky KS; Hayman M; Stillwell RA; Spuler SM Appl Opt; 2018 Jun; 57(16):4440-4450. PubMed ID: 29877391 [TBL] [Abstract][Full Text] [Related]
14. Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology. Bösenberg J Appl Opt; 1998 Jun; 37(18):3845-60. PubMed ID: 18273353 [TBL] [Abstract][Full Text] [Related]
16. Development and application of an airborne differential absorption lidar for the simultaneous measurement of ozone and water vapor profiles in the tropopause region. Fix A; Steinebach F; Wirth M; Schäfler A; Ehret G Appl Opt; 2019 Aug; 58(22):5892-5900. PubMed ID: 31503903 [TBL] [Abstract][Full Text] [Related]
17. Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory. Wulfmeyer V; Walther C Appl Opt; 2001 Oct; 40(30):5304-20. PubMed ID: 18364811 [TBL] [Abstract][Full Text] [Related]
18. Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis. Ismail S; Browell EV Appl Opt; 1989 Sep; 28(17):3603-15. PubMed ID: 20555744 [TBL] [Abstract][Full Text] [Related]
19. Improvement of CO₂-DIAL Signal-to-Noise Ratio Using Lifting Wavelet Transform. Xiang C; Han G; Zheng Y; Ma X; Gong W Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037002 [TBL] [Abstract][Full Text] [Related]
20. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols. Higdon NS; Browell EV; Ponsardin P; Grossmann BE; Butler CF; Chyba TH; Mayo MN; Allen RJ; Heuser AW; Grant WB; Ismail S; Mayor SD; Carter AF Appl Opt; 1994 Sep; 33(27):6422-38. PubMed ID: 20941181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]