These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 182174)

  • 1. The effect of alkylating agents on adenosine 3',5'-monophosphate metabolism in Walker carcinoma.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1976 Aug; 25(15):1793-7. PubMed ID: 182174
    [No Abstract]   [Full Text] [Related]  

  • 2. Alterations in adenosine 3', 5'-monophosphate-binding protein in Walker carcinoma cells sensitive or resistant to alkylating agents.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1976 Aug; 25(16):1831-6. PubMed ID: 9089
    [No Abstract]   [Full Text] [Related]  

  • 3. Cyclic nucleotide metabolism in Walker carcinoma cells resistant to alkylating agents.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1978 Mar; 27(6):947-52. PubMed ID: 207283
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparative effects of alkylating agents and other anti-tumour agents on the intracellular level of adenosine 3',5'-monophosphate in Walker carcinoma.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1975 Jul; 24(13-14):1271-6. PubMed ID: 167787
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of alkylating agents on the activity of adenosine 3',5'-monophosphate-dependent protein kinase in Walker carcinoma cells.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1976 Nov; 25(21):2365-70. PubMed ID: 187201
    [No Abstract]   [Full Text] [Related]  

  • 6. Characterisation of cyclic adenosine 3':5'-monophosphate phospodiesterase from Walker carcinoma sensitive and resistant to bifunctional alkylating agents.
    Tisdale MJ
    Biochim Biophys Acta; 1975 Jul; 397(1):134-43. PubMed ID: 238630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guanosine 3',5'-monophosphate and the action of alkylating agents.
    Tisdale MJ; Phillips BJ
    Chem Biol Interact; 1977 Dec; 19(3):375-81. PubMed ID: 202413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of cyclic AMP in gonadal steroidogenesis.
    Marsh JM
    Biol Reprod; 1976 Feb; 14(1):30-53. PubMed ID: 177107
    [No Abstract]   [Full Text] [Related]  

  • 9. Phosphodiesterases in vascular endothelial cells.
    Kishi Y; Ashikaga T; Numano F
    Adv Second Messenger Phosphoprotein Res; 1992; 25():201-13. PubMed ID: 1372811
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition of cyclic 3',5'-nucleotide phosphodiesterase-a possible mechanism of action of bifunctional alkylating agents.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1975 Jan; 24(2):211-7. PubMed ID: 163094
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of incubation temperature on motility and cAMP content of bovine sperm.
    Hammerstedt RH; Hay SR
    Arch Biochem Biophys; 1980 Feb; 199(2):427-37. PubMed ID: 6244780
    [No Abstract]   [Full Text] [Related]  

  • 12. Adenylate cyclase, cyclic adenosin 3':5'-monophosphate phosphodiesterase, and regression of Walker 256 mammary carcinoma.
    Cho-Chung YS; Newcomer SF
    Cancer Res; 1977 Dec; 37(12):4493-9. PubMed ID: 200352
    [No Abstract]   [Full Text] [Related]  

  • 13. Adenosine 3',5'-monophosphate phosphodiesterase activity in experimental animal tumours which are either sensitive or resistant to bifunctional alkylating agents.
    Tisdale MJ; Phillips BJ
    Biochem Pharmacol; 1975 Jan; 24(2):205-10. PubMed ID: 163093
    [No Abstract]   [Full Text] [Related]  

  • 14. Multiple neurite formation in neuroblastoma cell lines by griseolic acid, a potent inhibitor of cyclic nucleotide phosphodiesterases.
    Mitsui K; Tsuji S; Yamazaki M; Nagai Y
    J Neurochem; 1991 Aug; 57(2):556-61. PubMed ID: 1649254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of acidic saccharides produced by B16 melanoma cells treated with 1-methyl-3-isobutylxanthine.
    Banks J; Kreider JW; Sato C; Davidson EA
    Cancer Res; 1975 Sep; 35(9):2383-9. PubMed ID: 167957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of flavonoids on cyclic nucleotide phosphodiesterases.
    Beretz A; Anton R; Cazenave JP
    Prog Clin Biol Res; 1986; 213():281-96. PubMed ID: 3012580
    [No Abstract]   [Full Text] [Related]  

  • 17. Receptor-mediated gonadotropin action in the ovary. Regulatory role of cyclic nucleotide phosphodiesterase(s) in intracellular adenosine 3':5'-cyclic monophosphate turnover and gonadotropin-stimulated progesterone production by rat ovarian cells.
    Azhar S; Menon KM
    Biochem J; 1979 Apr; 180(1):201-11. PubMed ID: 226066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of neoplastic cell growth by quiescent cells is mediated by serum concentration and cAMP phosphodiesterase inhibitors.
    Bertram JS; Bertram BB; Janik P
    J Cell Biochem; 1982; 18(4):515-38. PubMed ID: 6282911
    [No Abstract]   [Full Text] [Related]  

  • 19. Turnover of adenosine 3',5'-monophosphate in WI-38 cultured fibroblasts.
    Barber R; Ray KP; Butcher RW
    Biochemistry; 1980 Jun; 19(12):2560-7. PubMed ID: 6249336
    [No Abstract]   [Full Text] [Related]  

  • 20. Short-term plasticity of cyclic adenosine 3',5'-monophosphate signaling in anterior pituitary corticotrope cells: the role of adenylyl cyclase isotypes.
    Antoni FA; Sosunov AA; Haunso A; Paterson JM; Simpson J
    Mol Endocrinol; 2003 Apr; 17(4):692-703. PubMed ID: 12554775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.