These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43 related articles for article (PubMed ID: 18217691)
1. Approaches for monitoring signal transduction changes in normal and cancer cells. Dent P; Hylemon PB; Grant S; Fisher PB Methods Mol Biol; 2007; 383():259-76. PubMed ID: 18217691 [TBL] [Abstract][Full Text] [Related]
2. Alterations in lens protein tyrosine phosphorylation and phosphatidylinositol 3-kinase signaling during selenite cataract formation. Chandrasekher G; Sailaja D Curr Eye Res; 2004 Feb; 28(2):135-44. PubMed ID: 14972719 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the CK2-dependent phosphorylation of serine 13 in Cdc37 using a phospho-specific antibody and phospho-affinity gel electrophoresis. Miyata Y; Nishida E FEBS J; 2007 Nov; 274(21):5690-703. PubMed ID: 17922836 [TBL] [Abstract][Full Text] [Related]
4. Profiling of protein kinases in the neoplastic transformation of human ovarian surface epithelium. Wong AS; Kim SO; Leung PC; Auersperg N; Pelech SL Gynecol Oncol; 2001 Aug; 82(2):305-11. PubMed ID: 11531284 [TBL] [Abstract][Full Text] [Related]
5. Ecto-protein kinase activities in normal and transformed cells. Kübler D; Barnekow A Eur J Cell Biol; 1986 Mar; 40(1):58-63. PubMed ID: 3009192 [TBL] [Abstract][Full Text] [Related]
6. Altered function of protein kinase C and cyclic adenosine monophosphate-dependent protein kinase in a cell line derived from a mouse lung papillary tumor. Nicks KM; Droms KA; Fossli T; Smith GJ; Malkinson AM Cancer Res; 1989 Sep; 49(18):5191-8. PubMed ID: 2548715 [TBL] [Abstract][Full Text] [Related]
7. Activation of p21ras/MAPK signal transduction molecules decreases with age in mitogen-stimulated T cells from rats. Pahlavani MA; Harris MD; Richardson A Cell Immunol; 1998 Apr; 185(1):39-48. PubMed ID: 9636681 [TBL] [Abstract][Full Text] [Related]
8. Cell cycle control during liver development in the rat: evidence indicating a role for cyclin D1 posttranscriptional regulation. Awad MM; Gruppuso PA Cell Growth Differ; 2000 Jun; 11(6):325-34. PubMed ID: 10910099 [TBL] [Abstract][Full Text] [Related]
9. Isoenzyme-specific protein kinase C and c-Jun N-terminal kinase activation by electrically stimulated contraction of neonatal rat ventricular myocytes. Strait JB; Samarel AM J Mol Cell Cardiol; 2000 Aug; 32(8):1553-66. PubMed ID: 10900180 [TBL] [Abstract][Full Text] [Related]
10. Tyrosine phosphorylation at the membrane-microfilament interface: a p185neu-associated signal transduction particle containing Src, Abl and phosphorylated p58, a membrane- and microfilament-associated retroviral gag-like protein. Juang SH; Carvajal ME; Whitney M; Liu Y; Carraway CA Oncogene; 1996 Mar; 12(5):1033-42. PubMed ID: 8649794 [TBL] [Abstract][Full Text] [Related]
11. Platelet-activating factor induces the tyrosine phosphorylation and activation of phospholipase C-gamma 1, Fyn and Lyn kinases, and phosphatidylinositol 3-kinase in a human B cell line. Kuruvilla A; Pielop C; Shearer WT J Immunol; 1994 Dec; 153(12):5433-42. PubMed ID: 7989748 [TBL] [Abstract][Full Text] [Related]
12. Activation and glucagon regulation of mitogen-activated protein kinases (MAPK) by insulin and epidermal growth factor in cultured rat and human hepatocytes. Ulrich RG; Cramer CT; Adams LA; Kletzien RF Cell Biochem Funct; 1998 Jun; 16(2):77-85. PubMed ID: 9636995 [TBL] [Abstract][Full Text] [Related]
13. Determination of ERK activity: antiphospho-ERK antibodies, in vitro phosphorylation, and in-gel kinase assay. Kraus S; Seger R Methods Mol Biol; 2004; 250():29-48. PubMed ID: 14755078 [No Abstract] [Full Text] [Related]
14. Profiling of the renal kinome: a novel tool to identify protein kinases involved in angiotensin II-dependent hypertensive renal damage. de Borst MH; Diks SH; Bolbrinker J; Schellings MW; van Dalen MB; Peppelenbosch MP; Kreutz R; Pinto YM; Navis G; van Goor H Am J Physiol Renal Physiol; 2007 Jul; 293(1):F428-37. PubMed ID: 17429032 [TBL] [Abstract][Full Text] [Related]
15. The changes of signal transduction pathways in hippocampal regions and postsynaptic densities after chronic cerebral hypoperfusion in rats. Hai J; Yu F; Lin Q; Su SH Brain Res; 2012 Jan; 1429():9-17. PubMed ID: 22063366 [TBL] [Abstract][Full Text] [Related]
16. Intracellular Phospho-Flow cytometry reveals novel insights into TCR proximal signaling events. A comparison with Western blot. Haas A; Weckbecker G; Welzenbach K Cytometry A; 2008 Sep; 73(9):799-807. PubMed ID: 18548611 [TBL] [Abstract][Full Text] [Related]
17. Protein kinase activity associated with immunopurified p53 protein. Kraiss S; Barnekow A; Montenarh M Oncogene; 1990 Jun; 5(6):845-55. PubMed ID: 2141685 [TBL] [Abstract][Full Text] [Related]
18. JNK1, JNK2 and JNK3 are p53 N-terminal serine 34 kinases. Hu MC; Qiu WR; Wang YP Oncogene; 1997 Nov; 15(19):2277-87. PubMed ID: 9393873 [TBL] [Abstract][Full Text] [Related]
19. p56lck phosphorylation by Ca2+/calmodulin-dependent protein kinase type II. Bland MM; McDonald OB; Carrera AC Biochem Biophys Res Commun; 1994 Jan; 198(1):67-73. PubMed ID: 8292050 [TBL] [Abstract][Full Text] [Related]
20. Versatile strategy for biochemical, electrochemical and immunoarray detection of protein phosphorylations. Martić S; Gabriel M; Turowec JP; Litchfield DW; Kraatz HB J Am Chem Soc; 2012 Oct; 134(41):17036-45. PubMed ID: 22764889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]