These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 18218029)
1. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Lesaulnier C; Papamichail D; McCorkle S; Ollivier B; Skiena S; Taghavi S; Zak D; van der Lelie D Environ Microbiol; 2008 Apr; 10(4):926-41. PubMed ID: 18218029 [TBL] [Abstract][Full Text] [Related]
2. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. Chen Y; Wu L; Boden R; Hillebrand A; Kumaresan D; Moussard H; Baciu M; Lu Y; Colin Murrell J ISME J; 2009 Sep; 3(9):1093-104. PubMed ID: 19474813 [TBL] [Abstract][Full Text] [Related]
3. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Jia Z; Conrad R Environ Microbiol; 2009 Jul; 11(7):1658-71. PubMed ID: 19236445 [TBL] [Abstract][Full Text] [Related]
5. Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO(2). Drigo B; van Veen JA; Kowalchuk GA ISME J; 2009 Oct; 3(10):1204-17. PubMed ID: 19536195 [TBL] [Abstract][Full Text] [Related]
6. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil. Hayden HL; Mele PM; Bougoure DS; Allan CY; Norng S; Piceno YM; Brodie EL; Desantis TZ; Andersen GL; Williams AL; Hovenden MJ Environ Microbiol; 2012 Dec; 14(12):3081-96. PubMed ID: 23039205 [TBL] [Abstract][Full Text] [Related]
7. Impact of elevated CO₂ and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants. Lee SH; Kim SY; Ding W; Kang H Appl Microbiol Biotechnol; 2015 Jun; 99(12):5295-305. PubMed ID: 25605423 [TBL] [Abstract][Full Text] [Related]
8. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Shen JP; Zhang LM; Zhu YG; Zhang JB; He JZ Environ Microbiol; 2008 Jun; 10(6):1601-11. PubMed ID: 18336563 [TBL] [Abstract][Full Text] [Related]
9. Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem. Lipson DA; Kuske CR; Gallegos-Graves LV; Oechel WC Glob Chang Biol; 2014 Aug; 20(8):2555-65. PubMed ID: 24753089 [TBL] [Abstract][Full Text] [Related]
10. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. Mertens J; Broos K; Wakelin SA; Kowalchuk GA; Springael D; Smolders E ISME J; 2009 Aug; 3(8):916-23. PubMed ID: 19387487 [TBL] [Abstract][Full Text] [Related]
11. Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. Goh F; Allen MA; Leuko S; Kawaguchi T; Decho AW; Burns BP; Neilan BA ISME J; 2009 Apr; 3(4):383-96. PubMed ID: 19092864 [TBL] [Abstract][Full Text] [Related]
12. Effects of elevated atmospheric CO2 concentrations on soil microorganisms. Freeman C; Kim SY; Lee SH; Kang H J Microbiol; 2004 Dec; 42(4):267-77. PubMed ID: 15650682 [TBL] [Abstract][Full Text] [Related]
13. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Steven B; Pollard WH; Greer CW; Whyte LG Environ Microbiol; 2008 Dec; 10(12):3388-403. PubMed ID: 19025556 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Miteva V; Teacher C; Sowers T; Brenchley J Environ Microbiol; 2009 Mar; 11(3):640-56. PubMed ID: 19278450 [TBL] [Abstract][Full Text] [Related]
15. Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. Cruz-Martínez K; Suttle KB; Brodie EL; Power ME; Andersen GL; Banfield JF ISME J; 2009 Jun; 3(6):738-44. PubMed ID: 19279669 [TBL] [Abstract][Full Text] [Related]
16. Methods of studying soil microbial diversity. Kirk JL; Beaudette LA; Hart M; Moutoglis P; Klironomos JN; Lee H; Trevors JT J Microbiol Methods; 2004 Aug; 58(2):169-88. PubMed ID: 15234515 [TBL] [Abstract][Full Text] [Related]
17. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Nemergut DR; Townsend AR; Sattin SR; Freeman KR; Fierer N; Neff JC; Bowman WD; Schadt CW; Weintraub MN; Schmidt SK Environ Microbiol; 2008 Nov; 10(11):3093-105. PubMed ID: 18764871 [TBL] [Abstract][Full Text] [Related]
18. Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. Liang Y; Li G; Van Nostrand JD; He Z; Wu L; Deng Y; Zhang X; Zhou J FEMS Microbiol Ecol; 2009 Nov; 70(2):324-33. PubMed ID: 19780823 [TBL] [Abstract][Full Text] [Related]
19. Diversity of the resident microbiota in a thermophilic municipal biogas plant. Weiss A; Jérôme V; Freitag R; Mayer HK Appl Microbiol Biotechnol; 2008 Nov; 81(1):163-73. PubMed ID: 18820906 [TBL] [Abstract][Full Text] [Related]
20. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. Zhou J; Deng Y; Luo F; He Z; Yang Y mBio; 2011; 2(4):. PubMed ID: 21791581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]