BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 18218379)

  • 1. A new method of magnetic resonance image reconstruction with short acquisition time and truncation artifact reduction.
    Barone P; Sebastiani G
    IEEE Trans Med Imaging; 1992; 11(2):250-9. PubMed ID: 18218379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel algorithm for the reduction of undersampling artefacts in magnetic resonance images.
    Placidi G; Sotgiu A
    Magn Reson Imaging; 2004 Nov; 22(9):1279-87. PubMed ID: 15607099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of autoregressive moving average parametric modeling in magnetic resonance image reconstruction.
    Smith MR; Nichols ST; Henkelman RM; Wood ML
    IEEE Trans Med Imaging; 1986; 5(3):132-9. PubMed ID: 18243999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging.
    Ai T; Padua A; Goerner F; Nittka M; Gugala Z; Jadhav S; Trelles M; Johnson RF; Lindsey RW; Li X; Runge VM
    Invest Radiol; 2012 May; 47(5):267-76. PubMed ID: 22266987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Truncation artifact reduction in magnetic resonance imaging by Markov random field methods.
    Sebastiani G; Barone P
    IEEE Trans Med Imaging; 1995; 14(3):434-41. PubMed ID: 18215847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computationally efficient superresolution image reconstruction algorithm.
    Nguyen N; Milanfar P; Golub G
    IEEE Trans Image Process; 2001; 10(4):573-83. PubMed ID: 18249647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Gibbs artifact reduction in magnetic resonance images based on inverse diffusion].
    Peng YY; Zhang Y; Jiang GP
    Nan Fang Yi Ke Da Xue Xue Bao; 2010 Sep; 30(9):2074-6. PubMed ID: 20855253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational acceleration for MR image reconstruction in partially parallel imaging.
    Ye X; Chen Y; Huang F
    IEEE Trans Med Imaging; 2011 May; 30(5):1055-63. PubMed ID: 20833599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comments on "Data truncation artifact reduction in MR imaging using a multilayer neural network".
    Hui Y; Smith MR
    IEEE Trans Med Imaging; 1995; 14(2):409-12. PubMed ID: 18215844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging.
    Chaâri L; Pesquet JC; Benazza-Benyahia A; Ciuciu P
    Med Image Anal; 2011 Apr; 15(2):185-201. PubMed ID: 21106436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast 3D iterative image reconstruction for SPECT with rotating slat collimators.
    Holen RV; Vandenberghe S; Staelens S; De Beenhouwer J; Lemahieu I
    Phys Med Biol; 2009 Feb; 54(3):715-29. PubMed ID: 19131666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiral imaging artifact reduction: a comparison of two k-trajectory measurement methods.
    Lechner SM; Sipilä PT; Wiesinger F; Kerr AB; Vogel MW
    J Magn Reson Imaging; 2009 Jun; 29(6):1485-92. PubMed ID: 19472426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase correction-based singularity function analysis for partial k-space reconstruction.
    Luo J; Zhu Y; Magnin I
    Magn Reson Imaging; 2008 Jul; 26(6):746-53. PubMed ID: 18467065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. k-space inherited parallel acquisition (KIPA): application on dynamic magnetic resonance imaging thermometry.
    Guo JY; Kholmovski EG; Zhang L; Jeong EK; Parker DL
    Magn Reson Imaging; 2006 Sep; 24(7):903-15. PubMed ID: 16916708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI reconstruction from 2D truncated k-space.
    Luo J; Zhu Y; Li W; Croisille P; Magnin IE
    J Magn Reson Imaging; 2012 May; 35(5):1196-206. PubMed ID: 22180316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data truncation artifact reduction in MR imaging using a multilayer neural network.
    Yan H; Mao J
    IEEE Trans Med Imaging; 1993; 12(1):73-7. PubMed ID: 18218394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel acquisition-reconstruction algorithm for surface magnetic resonance imaging.
    Franchi D; Sotgiu A; Placidi G
    Magn Reson Imaging; 2008 Nov; 26(9):1303-9. PubMed ID: 18499379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of pseudoperiodic patterns using partial acquisition of magnetic resonance images.
    Boiman O; Peled S; Yeshurun Y
    Magn Reson Imaging; 2004 Nov; 22(9):1265-78. PubMed ID: 15607098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method to expedite data acquisition for multiple spatial-temporal analyses of tissue perfusion by contrast-enhanced ultrasound.
    Hansen C; Hüttebräuker N; Wilkening W; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):507-19. PubMed ID: 19411210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of phase consistency to improve time efficiency and image quality in dual echo black-blood carotid angiography.
    Kholmovski EG; Parker DL
    Magn Reson Imaging; 2005 Jul; 23(6):711-22. PubMed ID: 16198826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.