BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 18218391)

  • 1. A fast maximum-intensity projection algorithm for generating magnetic resonance angiograms.
    Schreiner S; Galloway RR
    IEEE Trans Med Imaging; 1993; 12(1):50-7. PubMed ID: 18218391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance analysis of maximum intensity projection algorithm for display of MRA images.
    Sun Y; Parker DL
    IEEE Trans Med Imaging; 1999 Dec; 18(12):1154-69. PubMed ID: 10695528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of ray pathlengths when measuring objects in maximum intensity projection images.
    Schreiner S; Dawant BM; Paschal CB; Galloway RL
    IEEE Trans Med Imaging; 1996; 15(4):568-79. PubMed ID: 18215938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TOF-MRA using multi-oblique-stack acquisition (MOSA).
    Wu EX; Hui ES; Cheung JS
    J Magn Reson Imaging; 2007 Aug; 26(2):432-6. PubMed ID: 17610282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of cerebrovascular disease with MR angiography: comparison of volume rendering and maximum intensity projection algorithms--initial assessment.
    Mallouhi A; Chemelli A; Judmaier W; Giacomuzzi S; Jaschke WR; Waldenberger P
    Neuroradiology; 2002 Dec; 44(12):961-7. PubMed ID: 12483439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of projection algorithms used for the construction of maximum intensity projection images.
    Schreiner S; Paschal CB; Galloway RL
    J Comput Assist Tomogr; 1996; 20(1):56-67. PubMed ID: 8576483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. softMip: a novel projection algorithm for ultra-low-dose computed tomography.
    Meyer H; Juran R; Rogalla P
    J Comput Assist Tomogr; 2008; 32(3):480-4. PubMed ID: 18520560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Magnetic resonance angiography of the vessels of the neck: the optimization of a dynamic technic during the rapid infusion of a paramagnetic contrast medium].
    Scarabino T; Carriero A; Giannatempo GM; Simeone A; Armillotta M; Bonomo L; Salvolini U
    Radiol Med; 1997 Oct; 94(4):325-8. PubMed ID: 9465238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High signal intensity halo around the carotid artery on maximum intensity projection images of time-of-flight MR angiography: a new sign for intraplaque hemorrhage.
    Yim YJ; Choe YH; Ko Y; Kim ST; Kim KH; Jeon P; Byun HS; Kim DI
    J Magn Reson Imaging; 2008 Jun; 27(6):1341-6. PubMed ID: 18504753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal carotid artery stenosis measurements from 3D reconstructed multi-directional views using phantom data set on MRA image sequence.
    Kim DY; Park JW
    Eur J Radiol; 2009 Oct; 72(1):65-74. PubMed ID: 18619751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artifacts in maximum-intensity-projection display of MR angiograms.
    Anderson CM; Saloner D; Tsuruda JS; Shapeero LG; Lee RE
    AJR Am J Roentgenol; 1990 Mar; 154(3):623-9. PubMed ID: 2106232
    [No Abstract]   [Full Text] [Related]  

  • 12. [Evaluation of time of flight MR angiography for stenotic arterial lesions: including comparison of maximum intensity projection and volume rendering technique].
    Sagami A
    Nihon Igaku Hoshasen Gakkai Zasshi; 1994 Sep; 54(10):975-87. PubMed ID: 7971189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast 3D iterative image reconstruction for SPECT with rotating slat collimators.
    Holen RV; Vandenberghe S; Staelens S; De Beenhouwer J; Lemahieu I
    Phys Med Biol; 2009 Feb; 54(3):715-29. PubMed ID: 19131666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracranial vessel segmentation from time-of-flight MRA using pre-processing of the MIP Z-buffer: accuracy of the ZBS algorithm.
    Chapman BE; Stapelton JO; Parker DL
    Med Image Anal; 2004 Jun; 8(2):113-26. PubMed ID: 15063861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction from truncated projections using mixed extrapolations of exponential and quadratic functions.
    Zhao S; Yang K; Yang X
    J Xray Sci Technol; 2011; 19(2):155-72. PubMed ID: 21606580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition.
    Davis WL; Warnock SH; Harnsberger HR; Parker DL; Chen CX
    J Comput Assist Tomogr; 1993; 17(1):15-21. PubMed ID: 8419427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for rapid computation of maximum intensity projection images.
    Erickson BJ; Rettmann DW
    J Digit Imaging; 1997 Aug; 10(3 Suppl 1):207-8. PubMed ID: 9268884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time adaptive filtering for projection reconstruction MR fluoroscopy.
    Schaeffter T; Grass M; Proksa R; Rasche V
    IEEE Trans Med Imaging; 2003 Jan; 22(1):75-81. PubMed ID: 12703761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Maximum intensity projection (MIP) and multiplanar reformation (MPR) for post-processing cholangiopancreatographic data set--clinical application and pitfalls].
    Isogai S; Takehara Y; Isoda H; Kaneko M
    Nihon Rinsho; 1998 Nov; 56(11):2760-7. PubMed ID: 9847595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Fast 3D surface rendering for CT or MR image on a personal computer].
    Zhuge B; Feng HQ; Zhou HQ; Zhang SJ; Wu D
    Space Med Med Eng (Beijing); 2002 Aug; 15(4):296-9. PubMed ID: 12425338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.