These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 18218439)

  • 1. Stationary echo canceling in velocity estimation by time-domain cross-correlation.
    Jensen JA
    IEEE Trans Med Imaging; 1993; 12(3):471-7. PubMed ID: 18218439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artifacts in blood velocity estimation using ultrasound and cross-correlation.
    Jensen JA
    Med Biol Eng Comput; 1994 Jul; 32(4 Suppl):S165-70. PubMed ID: 7967831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of ultrasound time-domain cross-correlation blood velocity estimators.
    Jensen JA
    IEEE Trans Biomed Eng; 1993 May; 40(5):468-74. PubMed ID: 8225335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of echo suppression on the mean velocity estimation range of the RF cross-correlation model estimator.
    Brands PJ; Hoeks AP; Reneman RS
    Ultrasound Med Biol; 1995; 21(7):945-59. PubMed ID: 7491749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpolation methods for time-delay estimation using cross-correlation method for blood velocity measurement.
    Lai X; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):277-90. PubMed ID: 18238424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow velocity profile via time-domain correlation: error analysis and computer simulation.
    Foster SG; Embree PM; O'Brien WR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(3):164-75. PubMed ID: 18285029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelet transform-based strain estimator for elastography.
    Bilgen M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1407-15. PubMed ID: 18244336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EMAT noise suppression using information fusion in stationary wavelet packets.
    Kubinyi M; Kreibich O; Neuzil J; Smid R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1027-36. PubMed ID: 21622058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers.
    Bazán I; Vazquez M; Ramos A; Vera A; Leija L
    Ultrasonics; 2009 Mar; 49(3):358-76. PubMed ID: 19100591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro verification of multiple-receiver Doppler ultrasound for velocity estimation improvement.
    Hallac RR; Agarwal M; Jones SA
    Ultrasound Med Biol; 2010 Jun; 36(6):991-8. PubMed ID: 20447751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable and unbiased flow turbulence estimation from pulse echo ultrasound.
    Zheng Y; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1074-87. PubMed ID: 18244301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric estimation of ultrasonic phase velocity and attenuation in dispersive media.
    Martinsson J; Carlson JE
    Ultrasonics; 2006 Dec; 44 Suppl 1():e991-4. PubMed ID: 16806368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of ultrasound attenuation and dispersion using short time Fourier transform.
    Zhao B; Basir OA; Mittal GS
    Ultrasonics; 2005 Mar; 43(5):375-81. PubMed ID: 15737388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear frequency modulation photoacoustic radar: optimal bandwidth and signal-to-noise ratio for frequency-domain imaging of turbid media.
    Lashkari B; Mandelis A
    J Acoust Soc Am; 2011 Sep; 130(3):1313-24. PubMed ID: 21895073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between pulsed laser and frequency-domain photoacoustic modalities: signal-to-noise ratio, contrast, resolution, and maximum depth detectivity.
    Lashkari B; Mandelis A
    Rev Sci Instrum; 2011 Sep; 82(9):094903. PubMed ID: 21974612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Baseband velocity estimation for second-harmonic signals exploiting the invariance of the Doppler equation.
    Verbeek XA; Ledoux LA; Brands PJ; Hoeks AP
    IEEE Trans Biomed Eng; 1998 Oct; 45(10):1217-26. PubMed ID: 9775535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Range/velocity limitations for time-domain blood velocity estimation.
    Jensen JA
    Ultrasound Med Biol; 1993; 19(9):741-9. PubMed ID: 8134975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new wideband spread target maximum likelihood estimator for blood velocity estimation. II. Evaluation of estimator with experimental data.
    Ferrara KW; Algazi VR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):17-26. PubMed ID: 18267552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of speed-of-sound estimation from noisy ultrasonic signals.
    Ophir J; Yazdi Y; Lin TS; Shattuck DP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(1):16-24. PubMed ID: 18284945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-dimensional velocity estimation with ultrasound using spatial quadrature.
    Aderson ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):852-61. PubMed ID: 18244237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.