These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 18218480)

  • 1. Determination of optimal angiographic viewing angles: basic principles and evaluation study.
    Dumay AM; Reiber JC; Gerbrands JJ
    IEEE Trans Med Imaging; 1994; 13(1):13-24. PubMed ID: 18218480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved determination of biplane imaging geometry from two projection images and its application to three-dimensional reconstruction of coronary arterial trees.
    Chen SY; Metz CE
    Med Phys; 1997 May; 24(5):633-54. PubMed ID: 9167155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-D reconstruction of coronary arterial tree to optimize angiographic visualization.
    Chen SJ; Carroll JD
    IEEE Trans Med Imaging; 2000 Apr; 19(4):318-36. PubMed ID: 10909927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimum angiographic visualization of coronary segments using computer-aided 3D-reconstruction from biplane views.
    Solzbach U; Oser U; Rombach M; Wollschläger H; Just H
    Comput Biomed Res; 1994 Jun; 27(3):178-98. PubMed ID: 8070254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-D object recognition using 2-D views.
    Li W; Bebis G; Bourbakis NG
    IEEE Trans Image Process; 2008 Nov; 17(11):2236-55. PubMed ID: 18854254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical feasibility of a fully automated 3D reconstruction of rotational coronary X-ray angiograms.
    Neubauer AM; Garcia JA; Messenger JC; Hansis E; Kim MS; Klein AJ; Schoonenberg GA; Grass M; Carroll JD
    Circ Cardiovasc Interv; 2010 Feb; 3(1):71-9. PubMed ID: 20118152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of 3D imaging geometry and object configurations from two biplane views: an enhancement of the Metz-Fencil technique.
    Hoffmann KR; Metz CE; Chen Y
    Med Phys; 1995 Aug; 22(8):1219-27. PubMed ID: 7476707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D visualization and stereographic techniques for medical research and education.
    Rydmark M; Kling-Petersen T; Pascher R; Philip F
    Stud Health Technol Inform; 2001; 81():434-9. PubMed ID: 11317785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global optimization of optimal angiographic viewing angles for coronary arteries with multiple segments.
    Wang X; Yang J; Yang T; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2640-3. PubMed ID: 24110269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional quantitative coronary angiography.
    Saito T; Misaki M; Shirato K; Takishima T
    IEEE Trans Biomed Eng; 1990 Aug; 37(8):768-77. PubMed ID: 2210785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional trajectory assessment of an IVUS transducer from single-plane cineangiograms: a phantom study.
    Sherknies D; Meunier J; Mongrain R; Tardif JC
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):543-9. PubMed ID: 15759585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computer aided method for closed reduction of diaphyseal tibial fracture using projection images: A feasibility study.
    Koo TK; Papuga MO
    Comput Aided Surg; 2009; 14(1-3):45-57. PubMed ID: 20121586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of three-dimensional structure in biplane radiography without prior knowledge of the relationship between the two views: theory.
    Metz CE; Fencil LE
    Med Phys; 1989; 16(1):45-51. PubMed ID: 2921979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of 3D positions of pacemaker leads from biplane angiographic sequences.
    Hoffmann KR; Williams BB; Esthappan J; Chen SY; Carroll JD; Harauchi H; Doerr V; Kay GN; Eberhardt A; Overland M
    Med Phys; 1997 Dec; 24(12):1854-62. PubMed ID: 9434968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development and validation of a graphic method for spatial interpretation and evaluation of biplanar coronary angiograms].
    Wunderlich W; Fischer F; Arntz HR; Schultheiss HP; Morguet AJ
    Biomed Tech (Berl); 1999 Sep; 44(9):226-31. PubMed ID: 10520529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of coronary artery bifurcation angles by multidetector computed tomography.
    Pflederer T; Ludwig J; Ropers D; Daniel WG; Achenbach S
    Invest Radiol; 2006 Nov; 41(11):793-8. PubMed ID: 17035869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volume rendering of visible human data for an anatomical virtual environment.
    Kerr J; Ratiu P; Sellberg M
    Stud Health Technol Inform; 1996; 29():352-70. PubMed ID: 10163767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation and reduction of error in three-dimensional structure determined from biplane views of unknown orientation.
    Fencil LE; Metz CE
    Med Phys; 1990; 17(6):951-61. PubMed ID: 2280738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation of spatial information from biplane multidirectional coronary angiograms.
    Wollschläger H; Lee P; Zeiher A; Solzbach U; Bonzel T; Just H
    Med Prog Technol; 1986; 11(2):57-63. PubMed ID: 3747962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide-Baseline Foreground Object Interpolation Using Silhouette Shape Prior.
    Verleysen C; Maugey T; Frossard P; De Vleeschouwer C
    IEEE Trans Image Process; 2017 Nov; 26(11):5477-5490. PubMed ID: 28783631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.