BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 18218483)

  • 1. A 3D reconstruction of vascular structures from two X-ray angiograms using an adapted simulated annealing algorithm.
    Pellot C; Herment A; Sigelle M; Horain P; Maitre H; Peronneau P
    IEEE Trans Med Imaging; 1994; 13(1):48-60. PubMed ID: 18218483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of blood propagation in three-dimensional rotational X-ray angiography (3D-RA).
    Schmitt H; Grass M; Suurmond R; Köhler T; Rasche V; Hähnel S; Heiland S
    Comput Med Imaging Graph; 2005 Oct; 29(7):507-20. PubMed ID: 16140501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical feasibility of a fully automated 3D reconstruction of rotational coronary X-ray angiograms.
    Neubauer AM; Garcia JA; Messenger JC; Hansis E; Kim MS; Klein AJ; Schoonenberg GA; Grass M; Carroll JD
    Circ Cardiovasc Interv; 2010 Feb; 3(1):71-9. PubMed ID: 20118152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Slice reconstruction of 3D vessel based on object-oriented quantization].
    Yu H; Mou X; Cai Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Jun; 20(2):318-21. PubMed ID: 12856609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binary reconstruction of the heart chambers from biplane angiographic image sequences.
    Prause GM; Onnasch DW
    IEEE Trans Med Imaging; 1996; 15(4):532-46. PubMed ID: 18215934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fully automatic 3D reconstruction method using simulated annealing enables accurate posterioric angular assignment of protein projections.
    Ogura T; Sato C
    J Struct Biol; 2006 Dec; 156(3):371-86. PubMed ID: 16949302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale 3-D geometric reconstruction of the porcine coronary arterial vasculature based on detailed anatomical data.
    Kaimovitz B; Lanir Y; Kassab GS
    Ann Biomed Eng; 2005 Nov; 33(11):1517-35. PubMed ID: 16341920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on circular isocentric cone-beam trajectories for 3D image reconstructions using FDK algorithm.
    Soimu D; Buliev I; Pallikarakis N
    Comput Med Imaging Graph; 2008 Apr; 32(3):210-20. PubMed ID: 18255264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images.
    Yang J; Wang Y; Liu Y; Tang S; Chen W
    IEEE Trans Image Process; 2009 Jul; 18(7):1563-72. PubMed ID: 19414289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Object-based 3-D reconstruction of arterial trees from magnetic resonance angiograms.
    Fessler JA; Macovski A
    IEEE Trans Med Imaging; 1991; 10(1):25-39. PubMed ID: 18222797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-helical scanning.
    Tang X; Hsieh J; Nilsen RA; Dutta S; Samsonov D; Hagiwara A
    Phys Med Biol; 2006 Feb; 51(4):855-74. PubMed ID: 16467583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern density function for reconstruction of three-dimensional porous media from a single two-dimensional image.
    Gao M; Teng Q; He X; Zuo C; Li Z
    Phys Rev E; 2016 Jan; 93(1):012140. PubMed ID: 26871056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast joint estimation of silhouettes and dense 3D geometry from multiple images.
    Kolev K; Brox T; Cremers D
    IEEE Trans Pattern Anal Mach Intell; 2012 Mar; 34(3):493-505. PubMed ID: 21808082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An attempt to 3D reconstruct vessel morphology from X-ray projections and intravascular ultrasounds modeling and fusion.
    Pellot C; Bloch I; Herment A; Sureda F
    Comput Med Imaging Graph; 1996; 20(3):141-51. PubMed ID: 8930466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A shape-based segmentation algorithm for X-ray digital subtraction angiography images.
    Franchi D; Gallo P; Marsili L; Placidi G
    Comput Methods Programs Biomed; 2009 Jun; 94(3):267-78. PubMed ID: 19264373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional tomographic reconstruction of mesospheric airglow structures using two-station ground-based image measurements.
    Hart VP; Doyle TE; Taylor MJ; Carruth BL; Pautet PD; Zhao Y
    Appl Opt; 2012 Mar; 51(7):963-74. PubMed ID: 22410901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constrained iterative reconstruction by the conjugate gradient method.
    Kawata S; Nalcioglu O
    IEEE Trans Med Imaging; 1985; 4(2):65-71. PubMed ID: 18243953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-dimensional dense disparity estimation for three-dimensional reconstruction.
    Oisel L; Mémin E; Morin L; Galpin F
    IEEE Trans Image Process; 2003; 12(9):1107-19. PubMed ID: 18237982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformable 2D-3D registration of vascular structures in a one view scenario.
    Groher M; Zikic D; Navab N
    IEEE Trans Med Imaging; 2009 Jun; 28(6):847-60. PubMed ID: 19131296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy.
    Lee EK; Fox T; Crocker I
    Int J Radiat Oncol Biol Phys; 2006 Jan; 64(1):301-20. PubMed ID: 16289912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.