BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 18218503)

  • 1. Application of shape analysis to mammographic calcifications.
    Shen L; Rangayyan RM; Desautels JL
    IEEE Trans Med Imaging; 1994; 13(2):263-74. PubMed ID: 18218503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measures of acutance and shape for classification of breast tumors.
    Rangayyan RM; El-Faramawy NM; Desautels JE; Alim OA
    IEEE Trans Med Imaging; 1997 Dec; 16(6):799-810. PubMed ID: 9533580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of mammographic microcalcifications using gray-level image structure features.
    Dhawan AP; Chitre Y; Kaiser-Bonasso C
    IEEE Trans Med Imaging; 1996; 15(3):246-59. PubMed ID: 18215906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of sequences of cardiac contours by fourier descriptors for plane closed curves.
    IEEE Trans Med Imaging; 1987; 6(2):176-80. PubMed ID: 18230446
    [No Abstract]   [Full Text] [Related]  

  • 5. Computer-aided diagnosis of masses in breast computed tomography imaging: deep learning model with combined handcrafted and convolutional radiomic features.
    Caballo M; Hernandez AM; Lyu SH; Teuwen J; Mann RM; van Ginneken B; Boone JM; Sechopoulos I
    J Med Imaging (Bellingham); 2021 Mar; 8(2):024501. PubMed ID: 33796604
    [No Abstract]   [Full Text] [Related]  

  • 6. A shape-adjusted ellipse approach corrects for varied axonal dispersion angles and myelination in primate nerve roots.
    Bartmeyer PM; Biscola NP; Havton LA
    Sci Rep; 2021 Feb; 11(1):3150. PubMed ID: 33542368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-marker quantitative radiomics for mass characterization in dedicated breast CT imaging.
    Caballo M; Pangallo DR; Sanderink W; Hernandez AM; Lyu SH; Molinari F; Boone JM; Mann RM; Sechopoulos I
    Med Phys; 2021 Jan; 48(1):313-328. PubMed ID: 33232521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning-based segmentation of breast masses in dedicated breast CT imaging: Radiomic feature stability between radiologists and artificial intelligence.
    Caballo M; Pangallo DR; Mann RM; Sechopoulos I
    Comput Biol Med; 2020 Mar; 118():103629. PubMed ID: 32174316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Between-tumor and within-tumor heterogeneity in invasive potential.
    Padmanaban V; Tsehay Y; Cheung KJ; Ewald AJ; Bader JS
    PLoS Comput Biol; 2020 Jan; 16(1):e1007464. PubMed ID: 31961880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breast Microcalcification Diagnosis Using Deep Convolutional Neural Network from Digital Mammograms.
    Cai H; Huang Q; Rong W; Song Y; Li J; Wang J; Chen J; Li L
    Comput Math Methods Med; 2019; 2019():2717454. PubMed ID: 30944574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of micro-calcification in mammograms using scalable linear Fisher discriminant analysis.
    Suhail Z; Denton ERE; Zwiggelaar R
    Med Biol Eng Comput; 2018 Aug; 56(8):1475-1485. PubMed ID: 29368264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection.
    Jalalian A; Mashohor S; Mahmud R; Karasfi B; Saripan MIB; Ramli ARB
    EXCLI J; 2017; 16():113-137. PubMed ID: 28435432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-window parametric imaging based on information entropy for ultrasound tissue characterization.
    Tsui PH; Chen CK; Kuo WH; Chang KJ; Fang J; Ma HY; Chou D
    Sci Rep; 2017 Jan; 7():41004. PubMed ID: 28106118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of Shape-Based Descriptors and Mass Segmentation Areas on Initial Contour Placement Using the Chan-Vese Method on Digital Mammograms.
    Acho SN; Rae WI
    Comput Math Methods Med; 2015; 2015():349874. PubMed ID: 26379762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy.
    Barman I; Dingari NC; Saha A; McGee S; Galindo LH; Liu W; Plecha D; Klein N; Dasari RR; Fitzmaurice M
    Cancer Res; 2013 Jun; 73(11):3206-15. PubMed ID: 23729641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A similarity study of content-based image retrieval system for breast cancer using decision tree.
    Cho HC; Hadjiiski L; Sahiner B; Chan HP; Helvie M; Paramagul C; Nees AV
    Med Phys; 2013 Jan; 40(1):012901. PubMed ID: 23298117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrieval boosted computer-aided diagnosis of clustered microcalcifications for breast cancer.
    Jing H; Yang Y; Nishikawa RM
    Med Phys; 2012 Feb; 39(2):676-85. PubMed ID: 22320777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computerized segmentation method for individual calcifications within clustered microcalcifications while maintaining their shapes on magnification mammograms.
    Hizukuri A; Nakayama R; Nakako N; Kawanaka H; Takase H; Yamamoto K; Tsuruoka S
    J Digit Imaging; 2012 Jun; 25(3):377-86. PubMed ID: 21989574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive learning for relevance feedback: application to digital mammography.
    Oh JH; Yang Y; El Naqa I
    Med Phys; 2010 Aug; 37(8):4432-44. PubMed ID: 20879602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved medical decision support system to identify the breast cancer using mammogram.
    Suganthi M; Madheswaran M
    J Med Syst; 2012 Feb; 36(1):79-91. PubMed ID: 20703746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.