These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18218602)

  • 1. On Maxwell's equations in non-stationary media.
    Vorgul I
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1871):1781-8. PubMed ID: 18218602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating the scanning of a focused beam through scattering media using a numerical solution of Maxwell's equations.
    Elmaklizi A; Schäfer J; Kienle A
    J Biomed Opt; 2014 Jul; 19(7):071404. PubMed ID: 24395650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact and approximate solutions of Maxwell's equations for a confocal cavity.
    Varga P; Török P
    Opt Lett; 1996 Oct; 21(19):1523-5. PubMed ID: 19881712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium.
    Tseng SH; Greene JH; Taflove A; Maitland D; Backman V; Walsh JT
    Opt Lett; 2004 Jun; 29(12):1393-5. PubMed ID: 15233446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical solution of the time-dependent Maxwell's equations for random dielectric media.
    Harshawardhan W; Su Q; Grobe R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8705-12. PubMed ID: 11138172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reformulation of Maxwell's equations to incorporate near-solute solvent structure.
    Yang PK; Lim C
    J Phys Chem B; 2008 Sep; 112(35):10791-4. PubMed ID: 18698705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces.
    Deng S
    Comput Phys Commun; 2008 Dec; 179(11):791-800. PubMed ID: 20559461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Azimuthally polarized spatial dark solitons: exact solutions of Maxwell's equations in a Kerr medium.
    Ciattoni A; Crosignani B; Di Porto P; Yariv A
    Phys Rev Lett; 2005 Feb; 94(7):073902. PubMed ID: 15783817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution of the inhomogeneous Maxwell's equations using a Born series.
    Krüger B; Brenner T; Kienle A
    Opt Express; 2017 Oct; 25(21):25165-25182. PubMed ID: 29041187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of enhanced backscattering of light by numerically solving Maxwell's equations without heuristic approximations.
    Tseng S; Kim Y; Taflove A; Maitland D; Backman V; Walsh J
    Opt Express; 2005 May; 13(10):3666-72. PubMed ID: 19495273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solving Maxwell's Equations Using Polarimetry Alone.
    Olmos-Trigo J
    Nano Lett; 2024 Jul; 24(28):8658-8663. PubMed ID: 38949763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Maxwell's theory of Saturn's rings to the negative mass instability.
    Fedele R
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1871):1717-33. PubMed ID: 18222902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scale transformation of Maxwell's equations and scattering by an elliptic cylinder.
    Ferrari LA
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1285-90. PubMed ID: 21643414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derivation of the scalar radiative transfer equation from energy conservation of Maxwell's equations in the far field.
    Ripoll J
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1765-75. PubMed ID: 21811340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic wave scattering from a rough interface above a chiral medium: generalized telegraphists' equations.
    Bahar E; Crittenden PE
    J Opt Soc Am A Opt Image Sci Vis; 2013 Mar; 30(3):335-41. PubMed ID: 23456109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light scattering by a spheroidal particle.
    Asano S; Yamamoto G
    Appl Opt; 1975 Jan; 14(1):29-49. PubMed ID: 20134829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technique for handling wave propagation specific effects in biological tissue: mapping of the photon transport equation to Maxwell's equations.
    Handapangoda CC; Premaratne M; Paganin DM; Hendahewa PR
    Opt Express; 2008 Oct; 16(22):17792-807. PubMed ID: 18958061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverse scattering with a non self-adjoint variational formulation.
    Marks DL; Smith DR
    Opt Express; 2018 Mar; 26(6):7655-7671. PubMed ID: 29609318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic wave scattering from a rough interface above a chiral medium: generalized field transforms.
    Crittenden PE; Bahar E
    J Opt Soc Am A Opt Image Sci Vis; 2013 Mar; 30(3):325-34. PubMed ID: 23456108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse diffraction grating of Maxwell's equations in biperiodic structures.
    Bao G; Cui T; Li P
    Opt Express; 2014 Feb; 22(4):4799-816. PubMed ID: 24663798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.