These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18218847)

  • 21. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of RGD-immobilized dual-pore poly(L-lactic acid) scaffolds on chondrocyte proliferation and extracellular matrix production.
    Jung HJ; Park K; Kim JJ; Lee JH; Han KO; Han DK
    Artif Organs; 2008 Dec; 32(12):981-9. PubMed ID: 19133029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chondrogenic differentiation of ChM-I gene transfected rat bone marrow-derived mesenchymal stem cells on 3-dimensional poly (L-lactic acid) scaffold for cartilage engineering.
    Xing SC; Liu Y; Feng Y; Jiang C; Hu YQ; Sun W; Wang XH; Wei ZY; Qi M; Liu J; Zhai LJ; Wang ZQ
    Cell Biol Int; 2015 Mar; 39(3):300-9. PubMed ID: 25319137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Small intestinal submucosa versus salt-extracted polyglycolic acid-poly-L-lactic acid: a comparison of neocartilage formed in two scaffold materials.
    Beatty MW; Ojha AK; Cook JL; Alberts LR; Mahanna GK; Iwasaki LR; Nickel JC
    Tissue Eng; 2002 Dec; 8(6):955-68. PubMed ID: 12542941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of three growth factors for TMJ disc tissue engineering.
    Detamore MS; Athanasiou KA
    Ann Biomed Eng; 2005 Mar; 33(3):383-90. PubMed ID: 15868729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of initial cell seeding density for the tissue engineering of the temporomandibular joint disc.
    Almarza AJ; Athanasiou KA
    Ann Biomed Eng; 2005 Jul; 33(7):943-50. PubMed ID: 16060535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering smooth muscle tissue with a predefined structure.
    Kim BS; Mooney DJ
    J Biomed Mater Res; 1998 Aug; 41(2):322-32. PubMed ID: 9638538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth factor effects on passaged TMJ disk cells in monolayer and pellet cultures.
    Allen KD; Athanasiou KA
    Orthod Craniofac Res; 2006 Aug; 9(3):143-52. PubMed ID: 16918679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology.
    Ding C; Qiao Z; Jiang W; Li H; Wei J; Zhou G; Dai K
    Biomaterials; 2013 Sep; 34(28):6706-16. PubMed ID: 23773816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.
    Wang L; Detamore MS
    Arch Oral Biol; 2009 Jan; 54(1):1-5. PubMed ID: 18640663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering.
    Sahoo S; Cho-Hong JG; Siew-Lok T
    Biomed Mater; 2007 Sep; 2(3):169-73. PubMed ID: 18458468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poly (glycerol sebacate): a novel scaffold material for temporomandibular joint disc engineering.
    Hagandora CK; Gao J; Wang Y; Almarza AJ
    Tissue Eng Part A; 2013 Mar; 19(5-6):729-37. PubMed ID: 23157344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers.
    Fan MR; Gong M; Da LC; Bai L; Li XQ; Chen KF; Li-Ling J; Yang ZM; Xie HQ
    Biomed Mater; 2014 Feb; 9(1):015012. PubMed ID: 24457267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scaffolding for challenging environments: materials selection for tissue engineered intestine.
    Boomer L; Liu Y; Mahler N; Johnson J; Zak K; Nelson T; Lannutti J; Besner GE
    J Biomed Mater Res A; 2014 Nov; 102(11):3795-802. PubMed ID: 24288210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber.
    Lou T; Wang X; Song G
    Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of TGF-beta1 and hydrostatic pressure on meniscus cell-seeded scaffolds.
    Gunja NJ; Uthamanthil RK; Athanasiou KA
    Biomaterials; 2009 Feb; 30(4):565-73. PubMed ID: 18980779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication.
    Gao C; Yang B; Hu H; Liu J; Shuai C; Peng S
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3802-10. PubMed ID: 23910280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1443-51. PubMed ID: 24364944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.