These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 18218854)
21. Hereditary poikilocytic anemia associated with the co-inheritance of two alpha spectrin abnormalities. Iarocci TA; Wagner GM; Mohandas N; Lane PA; Mentzer WC Blood; 1988 May; 71(5):1390-6. PubMed ID: 3359047 [TBL] [Abstract][Full Text] [Related]
22. Altered spectrin association and membrane fragility without abnormal spectrin heat sensitivity in a case of congenital hemolytic anemia. Ravindranath Y; Johnson RM Am J Hematol; 1985 Sep; 20(1):53-65. PubMed ID: 4025321 [TBL] [Abstract][Full Text] [Related]
29. Molecular determinants of clinical expression of hereditary elliptocytosis and pyropoikilocytosis. Coetzer T; Lawler J; Prchal JT; Palek J Blood; 1987 Sep; 70(3):766-72. PubMed ID: 3620700 [TBL] [Abstract][Full Text] [Related]
30. Altered spectrin dimer-dimer association and instability of erythrocyte membrane skeletons in hereditary pyropoikilocytosis. Liu SC; Palek J; Prchal J; Castleberry RP J Clin Invest; 1981 Sep; 68(3):597-605. PubMed ID: 7276161 [TBL] [Abstract][Full Text] [Related]
31. Important region in the beta-spectrin C-terminus for spectrin tetramer formation. Luo BH; Mehboob S; Hurtuk MG; Pipalia NH; Fung LW Eur J Haematol; 2002 Feb; 68(2):73-9. PubMed ID: 12038451 [TBL] [Abstract][Full Text] [Related]
32. Nuclear magnetic resonance studies of mutations at the tetramerization region of human alpha spectrin. Park S; Johnson ME; Fung LW Blood; 2002 Jul; 100(1):283-8. PubMed ID: 12070038 [TBL] [Abstract][Full Text] [Related]
33. Molecular insights into hereditary elliptocytosis and pyropoikilocytosis: NGS uncovers multiple potential candidate genes. Shome DK; Das P; Akbar GA; Taha S; Radhi A; Al-Saad K; Helmy R Ann Hematol; 2023 Sep; 102(9):2343-2351. PubMed ID: 37400730 [TBL] [Abstract][Full Text] [Related]
34. A partial structural repeat forms the heterodimer self-association site of all beta-spectrins. Kennedy SP; Weed SA; Forget BG; Morrow JS J Biol Chem; 1994 Apr; 269(15):11400-8. PubMed ID: 8157672 [TBL] [Abstract][Full Text] [Related]
35. Drosophila development requires spectrin network formation. Deng H; Lee JK; Goldstein LS; Branton D J Cell Biol; 1995 Jan; 128(1-2):71-9. PubMed ID: 7822424 [TBL] [Abstract][Full Text] [Related]
37. Apparent structural differences at the tetramerization region of erythroid and nonerythroid beta spectrin as discriminated by phage displayed scFvs. Song Y; Antoniou C; Memic A; Kay BK; Fung LW Protein Sci; 2011 May; 20(5):867-79. PubMed ID: 21412925 [TBL] [Abstract][Full Text] [Related]
38. Mapping the human erythrocyte beta-spectrin dimer initiation site using recombinant peptides and correlation of its phasing with the alpha-actinin dimer site. Ursitti JA; Kotula L; DeSilva TM; Curtis PJ; Speicher DW J Biol Chem; 1996 Mar; 271(12):6636-44. PubMed ID: 8636080 [TBL] [Abstract][Full Text] [Related]
39. Location of the human red cell spectrin tetramer binding site and detection of a related "closed" hairpin loop dimer using proteolytic footprinting. Speicher DW; DeSilva TM; Speicher KD; Ursitti JA; Hembach P; Weglarz L J Biol Chem; 1993 Feb; 268(6):4227-35. PubMed ID: 8440706 [TBL] [Abstract][Full Text] [Related]
40. Structural basis for spectrin recognition by ankyrin. Ipsaro JJ; Mondragón A Blood; 2010 May; 115(20):4093-101. PubMed ID: 20101027 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]