These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18218882)

  • 21. Stl1 transporter mediating the uptake of glycerol is not a weak point of Saccharomyces kudriavzevii's low osmotolerance.
    Zemančíková J; Papoušková K; Peréz-Torrado R; Querol A; Sychrová H
    Lett Appl Microbiol; 2019 Jan; 68(1):81-86. PubMed ID: 30382581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The antifungal polyketide ambruticin targets the HOG pathway.
    Vetcher L; Menzella HG; Kudo T; Motoyama T; Katz L
    Antimicrob Agents Chemother; 2007 Oct; 51(10):3734-6. PubMed ID: 17698623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Requirement for the polarisome and formin function in Ssk2p-mediated actin recovery from osmotic stress in Saccharomyces cerevisiae.
    Bettinger BT; Clark MG; Amberg DC
    Genetics; 2007 Apr; 175(4):1637-48. PubMed ID: 17237521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rgc2 Regulator of Glycerol Channel Fps1 Functions as a Homo- and Heterodimer with Rgc1.
    Lee J; Levin DE
    Eukaryot Cell; 2015 Jul; 14(7):719-25. PubMed ID: 26024902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mucins, osmosensors in eukaryotic cells?
    de Nadal E; Real FX; Posas F
    Trends Cell Biol; 2007 Dec; 17(12):571-4. PubMed ID: 17981467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning the range and stability of multiple phenotypic states with coupled positive-negative feedback loops.
    Avendaño MS; Leidy C; Pedraza JM
    Nat Commun; 2013; 4():2605. PubMed ID: 24189549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The high-osmolarity glycerol- and cell wall integrity-MAP kinase pathways of Saccharomyces cerevisiae are involved in adaptation to the action of killer toxin HM-1.
    Miyamoto M; Furuichi Y; Komiyama T
    Yeast; 2012 Nov; 29(11):475-85. PubMed ID: 23065846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress.
    Proft M; Mas G; de Nadal E; Vendrell A; Noriega N; Struhl K; Posas F
    Mol Cell; 2006 Jul; 23(2):241-50. PubMed ID: 16857590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell integrity signaling activation in response to hyperosmotic shock in yeast.
    García-Rodríguez LJ; Valle R; Durán A; Roncero C
    FEBS Lett; 2005 Nov; 579(27):6186-90. PubMed ID: 16243316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activated signal transduction kinases frequently occupy target genes.
    Pokholok DK; Zeitlinger J; Hannett NM; Reynolds DB; Young RA
    Science; 2006 Jul; 313(5786):533-6. PubMed ID: 16873666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The UV response in Saccharomyces cerevisiae involves the mitogen-activated protein kinase Slt2p.
    Bryan BA; Knapp GS; Bowen LM; Polymenis M
    Curr Microbiol; 2004 Jul; 49(1):32-4. PubMed ID: 15297927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systems Level Analysis of the Yeast Osmo-Stat.
    Talemi SR; Tiger CF; Andersson M; Babazadeh R; Welkenhuysen N; Klipp E; Hohmann S; Schaber J
    Sci Rep; 2016 Aug; 6():30950. PubMed ID: 27515486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cybernetics, Redux: An Outside-In Strategy for Unraveling Cellular Function.
    Malleshaiah M; Gunawardena J
    Dev Cell; 2016 Jan; 36(1):2-4. PubMed ID: 26766437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cdc37p is required for stress-induced high-osmolarity glycerol and protein kinase C mitogen-activated protein kinase pathway functionality by interaction with Hog1p and Slt2p (Mpk1p).
    Hawle P; Horst D; Bebelman JP; Yang XX; Siderius M; van der Vies SM
    Eukaryot Cell; 2007 Mar; 6(3):521-32. PubMed ID: 17220467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress.
    Parmar JH; Bhartiya S; Venkatesh KV
    Phys Biol; 2009 Aug; 6(3):036019. PubMed ID: 19657148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway.
    Tatebayashi K; Yamamoto K; Tanaka K; Tomida T; Maruoka T; Kasukawa E; Saito H
    EMBO J; 2006 Jul; 25(13):3033-44. PubMed ID: 16778768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Negative feedback-loop mechanisms regulating HOG- and pheromone-MAPK signaling in yeast.
    Vázquez-Ibarra A; Rodríguez-Martínez G; Guerrero-Serrano G; Kawasaki L; Ongay-Larios L; Coria R
    Curr Genet; 2020 Oct; 66(5):867-880. PubMed ID: 32564133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway.
    Krantz M; Ahmadpour D; Ottosson LG; Warringer J; Waltermann C; Nordlander B; Klipp E; Blomberg A; Hohmann S; Kitano H
    Mol Syst Biol; 2009; 5():281. PubMed ID: 19536204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel insights into the osmotic stress response of yeast.
    Mager WH; Siderius M
    FEMS Yeast Res; 2002 Aug; 2(3):251-7. PubMed ID: 12702273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway.
    Remize F; Cambon B; Barnavon L; Dequin S
    Yeast; 2003 Nov; 20(15):1243-53. PubMed ID: 14618562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.