These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18218972)

  • 1. Tie-dyed2 functions with tie-dyed1 to promote carbohydrate export from maize leaves.
    Baker RF; Braun DM
    Plant Physiol; 2008 Mar; 146(3):1085-97. PubMed ID: 18218972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tie-dyed1 and sucrose export defective1 act independently to promote carbohydrate export from maize leaves.
    Ma Y; Baker RF; Magallanes-Lundback M; DellaPenna D; Braun DM
    Planta; 2008 Feb; 227(3):527-38. PubMed ID: 17924136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tie-dyed1 Functions non-cell autonomously to control carbohydrate accumulation in maize leaves.
    Baker RF; Braun DM
    Plant Physiol; 2007 Jun; 144(2):867-78. PubMed ID: 17434986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. tie-dyed1 Regulates carbohydrate accumulation in maize leaves.
    Braun DM; Ma Y; Inada N; Muszynski MG; Baker RF
    Plant Physiol; 2006 Dec; 142(4):1511-22. PubMed ID: 17071639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tie-dyed1 encodes a novel, phloem-expressed transmembrane protein that functions in carbohydrate partitioning.
    Ma Y; Slewinski TL; Baker RF; Braun DM
    Plant Physiol; 2009 Jan; 149(1):181-94. PubMed ID: 18923021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tie-dyed2 encodes a callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves.
    Slewinski TL; Baker RF; Stubert A; Braun DM
    Plant Physiol; 2012 Nov; 160(3):1540-50. PubMed ID: 22932757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the role of Tie-dyed1 in starch metabolism: epistasis analysis with a maize ADP-glucose pyrophosphorylase mutant lacking leaf starch.
    Slewinski TL; Ma Y; Baker RF; Huang M; Meeley R; Braun DM
    J Hered; 2008; 99(6):661-6. PubMed ID: 18723774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tie-dyed pathway promotes symplastic trafficking in the phloem.
    Baker RF; Slewinski TL; Braun DM
    Plant Signal Behav; 2013 Jun; 8(6):e24540. PubMed ID: 23603956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The psychedelic genes of maize redundantly promote carbohydrate export from leaves.
    Slewinski TL; Braun DM
    Genetics; 2010 May; 185(1):221-32. PubMed ID: 20142436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Starch phosphorylase 2 is essential for cellular carbohydrate partitioning in maize.
    Qin Y; Xiao Z; Zhao H; Wang J; Wang Y; Qiu F
    J Integr Plant Biol; 2022 Sep; 64(9):1755-1769. PubMed ID: 35796344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sucrose transporter1 functions in phloem loading in maize leaves.
    Slewinski TL; Meeley R; Braun DM
    J Exp Bot; 2009; 60(3):881-92. PubMed ID: 19181865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling.
    Provencher LM; Miao L; Sinha N; Lucas WJ
    Plant Cell; 2001 May; 13(5):1127-41. PubMed ID: 11340186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maize Brittle Stalk2-Like3, encoding a COBRA protein, functions in cell wall formation and carbohydrate partitioning.
    Julius BT; McCubbin TJ; Mertz RA; Baert N; Knoblauch J; Grant DG; Conner K; Bihmidine S; Chomet P; Wagner R; Woessner J; Grote K; Peevers J; Slewinski TL; McCann MC; Carpita NC; Knoblauch M; Braun DM
    Plant Cell; 2021 Oct; 33(10):3348-3366. PubMed ID: 34323976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maize Carbohydrate partitioning defective1 impacts carbohydrate distribution, callose accumulation, and phloem function.
    Julius BT; Slewinski TL; Baker RF; Tzin V; Zhou S; Bihmidine S; Jander G; Braun DM
    J Exp Bot; 2018 Jul; 69(16):3917-3931. PubMed ID: 29846660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tocopherol deficiency reduces sucrose export from salt-stressed potato leaves independently of oxidative stress and symplastic obstruction by callose.
    Asensi-Fabado MA; Ammon A; Sonnewald U; Munné-Bosch S; Voll LM
    J Exp Bot; 2015 Feb; 66(3):957-71. PubMed ID: 25428995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maize Carbohydrate Partitioning Defective33 Encodes an MCTP Protein and Functions in Sucrose Export from Leaves.
    Tran TM; McCubbin TJ; Bihmidine S; Julius BT; Baker RF; Schauflinger M; Weil C; Springer N; Chomet P; Wagner R; Woessner J; Grote K; Peevers J; Slewinski TL; Braun DM
    Mol Plant; 2019 Sep; 12(9):1278-1293. PubMed ID: 31102785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcript and metabolite signature of maize source leaves suggests a link between transitory starch to sucrose balance and the autonomous floral transition.
    Coneva V; Guevara D; Rothstein SJ; Colasanti J
    J Exp Bot; 2012 Sep; 63(14):5079-92. PubMed ID: 22791826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity.
    Sindhu A; Langewisch T; Olek A; Multani DS; McCann MC; Vermerris W; Carpita NC; Johal G
    Plant Physiol; 2007 Dec; 145(4):1444-59. PubMed ID: 17932309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case.
    Zhao H; Su T; Huo L; Wei H; Jiang Y; Xu L; Ma F
    J Pineal Res; 2015 Sep; 59(2):255-66. PubMed ID: 26122919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specification of adaxial cell fate during maize leaf development.
    Juarez MT; Twigg RW; Timmermans MC
    Development; 2004 Sep; 131(18):4533-44. PubMed ID: 15342478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.