BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18218972)

  • 1. Tie-dyed2 functions with tie-dyed1 to promote carbohydrate export from maize leaves.
    Baker RF; Braun DM
    Plant Physiol; 2008 Mar; 146(3):1085-97. PubMed ID: 18218972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tie-dyed1 and sucrose export defective1 act independently to promote carbohydrate export from maize leaves.
    Ma Y; Baker RF; Magallanes-Lundback M; DellaPenna D; Braun DM
    Planta; 2008 Feb; 227(3):527-38. PubMed ID: 17924136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tie-dyed1 Functions non-cell autonomously to control carbohydrate accumulation in maize leaves.
    Baker RF; Braun DM
    Plant Physiol; 2007 Jun; 144(2):867-78. PubMed ID: 17434986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. tie-dyed1 Regulates carbohydrate accumulation in maize leaves.
    Braun DM; Ma Y; Inada N; Muszynski MG; Baker RF
    Plant Physiol; 2006 Dec; 142(4):1511-22. PubMed ID: 17071639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tie-dyed1 encodes a novel, phloem-expressed transmembrane protein that functions in carbohydrate partitioning.
    Ma Y; Slewinski TL; Baker RF; Braun DM
    Plant Physiol; 2009 Jan; 149(1):181-94. PubMed ID: 18923021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tie-dyed2 encodes a callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves.
    Slewinski TL; Baker RF; Stubert A; Braun DM
    Plant Physiol; 2012 Nov; 160(3):1540-50. PubMed ID: 22932757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the role of Tie-dyed1 in starch metabolism: epistasis analysis with a maize ADP-glucose pyrophosphorylase mutant lacking leaf starch.
    Slewinski TL; Ma Y; Baker RF; Huang M; Meeley R; Braun DM
    J Hered; 2008; 99(6):661-6. PubMed ID: 18723774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tie-dyed pathway promotes symplastic trafficking in the phloem.
    Baker RF; Slewinski TL; Braun DM
    Plant Signal Behav; 2013 Jun; 8(6):e24540. PubMed ID: 23603956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The psychedelic genes of maize redundantly promote carbohydrate export from leaves.
    Slewinski TL; Braun DM
    Genetics; 2010 May; 185(1):221-32. PubMed ID: 20142436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Starch phosphorylase 2 is essential for cellular carbohydrate partitioning in maize.
    Qin Y; Xiao Z; Zhao H; Wang J; Wang Y; Qiu F
    J Integr Plant Biol; 2022 Sep; 64(9):1755-1769. PubMed ID: 35796344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sucrose transporter1 functions in phloem loading in maize leaves.
    Slewinski TL; Meeley R; Braun DM
    J Exp Bot; 2009; 60(3):881-92. PubMed ID: 19181865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling.
    Provencher LM; Miao L; Sinha N; Lucas WJ
    Plant Cell; 2001 May; 13(5):1127-41. PubMed ID: 11340186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maize Brittle Stalk2-Like3, encoding a COBRA protein, functions in cell wall formation and carbohydrate partitioning.
    Julius BT; McCubbin TJ; Mertz RA; Baert N; Knoblauch J; Grant DG; Conner K; Bihmidine S; Chomet P; Wagner R; Woessner J; Grote K; Peevers J; Slewinski TL; McCann MC; Carpita NC; Knoblauch M; Braun DM
    Plant Cell; 2021 Oct; 33(10):3348-3366. PubMed ID: 34323976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maize Carbohydrate partitioning defective1 impacts carbohydrate distribution, callose accumulation, and phloem function.
    Julius BT; Slewinski TL; Baker RF; Tzin V; Zhou S; Bihmidine S; Jander G; Braun DM
    J Exp Bot; 2018 Jul; 69(16):3917-3931. PubMed ID: 29846660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tocopherol deficiency reduces sucrose export from salt-stressed potato leaves independently of oxidative stress and symplastic obstruction by callose.
    Asensi-Fabado MA; Ammon A; Sonnewald U; Munné-Bosch S; Voll LM
    J Exp Bot; 2015 Feb; 66(3):957-71. PubMed ID: 25428995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maize Carbohydrate Partitioning Defective33 Encodes an MCTP Protein and Functions in Sucrose Export from Leaves.
    Tran TM; McCubbin TJ; Bihmidine S; Julius BT; Baker RF; Schauflinger M; Weil C; Springer N; Chomet P; Wagner R; Woessner J; Grote K; Peevers J; Slewinski TL; Braun DM
    Mol Plant; 2019 Sep; 12(9):1278-1293. PubMed ID: 31102785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcript and metabolite signature of maize source leaves suggests a link between transitory starch to sucrose balance and the autonomous floral transition.
    Coneva V; Guevara D; Rothstein SJ; Colasanti J
    J Exp Bot; 2012 Sep; 63(14):5079-92. PubMed ID: 22791826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity.
    Sindhu A; Langewisch T; Olek A; Multani DS; McCann MC; Vermerris W; Carpita NC; Johal G
    Plant Physiol; 2007 Dec; 145(4):1444-59. PubMed ID: 17932309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case.
    Zhao H; Su T; Huo L; Wei H; Jiang Y; Xu L; Ma F
    J Pineal Res; 2015 Sep; 59(2):255-66. PubMed ID: 26122919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specification of adaxial cell fate during maize leaf development.
    Juarez MT; Twigg RW; Timmermans MC
    Development; 2004 Sep; 131(18):4533-44. PubMed ID: 15342478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.