These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 18219413)

  • 1. Weak chemiluminescence emission during base induced rearrangement of G-factors.
    Bernat V; André C; André-Barrès C
    Org Biomol Chem; 2008 Feb; 6(3):454-7. PubMed ID: 18219413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evidence of the occurrence of intramolecular electron transfer in catalyzed 1,2-dioxetane decomposition.
    Ciscato LF; Bartoloni FH; Weiss D; Beckert R; Baader WJ
    J Org Chem; 2010 Oct; 75(19):6574-80. PubMed ID: 20825174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxide induced ultra-weak chemiluminescence and its application in analytical chemistry.
    Lin Z; Chen H; Lin JM
    Analyst; 2013 Sep; 138(18):5182-93. PubMed ID: 23837186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13C-NMR study of the ruthenium(II)-catalyzed degradation of labeled G-factor endoperoxides: proposal of a likely biogenetic pathway and evidence for CO2 release.
    André-Barrès C; Baltas M; Massou S
    Chem Biodivers; 2006 Mar; 3(3):349-58. PubMed ID: 17193272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the Formation of 1,2-Dioxetane as a High-Energy Intermediate and Possible Chemiexcitation Pathways in the Chemiluminescence of Lophine Peroxides.
    Boaro A; Reis RA; Silva CS; Melo DU; Pinto AGGC; Bartoloni FH
    J Org Chem; 2021 May; 86(9):6633-6647. PubMed ID: 33876635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemiluminescence in autoxidation of phosphonate carbanions. Phospha-1,2-dioxetanes as the most likely high-energy intermediates.
    Motoyoshiya J; Ikeda T; Tsuboi S; Kusaura T; Takeuchi Y; Hayashi S; Yoshioka S; Takaguchi Y; Aoyama H
    J Org Chem; 2003 Jul; 68(15):5950-5. PubMed ID: 12868931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemi- and Bioluminescence of Cyclic Peroxides.
    Vacher M; Fdez Galván I; Ding BW; Schramm S; Berraud-Pache R; Naumov P; Ferré N; Liu YJ; Navizet I; Roca-Sanjuán D; Baader WJ; Lindh R
    Chem Rev; 2018 Aug; 118(15):6927-6974. PubMed ID: 29493234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The deacetylation reaction in Eucalyptus wood: kinetics and effects on the effective diffusion.
    Inalbon MC; Mocchiutti P; Zanuttini M
    Bioresour Technol; 2009 Apr; 100(7):2254-8. PubMed ID: 19095440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interspecific hybridization of Eucalyptus as a potential tool to improve the bioactivity of essential oils against permethrin-resistant head lice from Argentina.
    Toloza AC; Lucia A; Zerba E; Masuh H; Picollo MI
    Bioresour Technol; 2008 Oct; 99(15):7341-7. PubMed ID: 18261899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant.
    Woodward JJ; Chang MM; Martin NI; Marletta MA
    J Am Chem Soc; 2009 Jan; 131(1):297-305. PubMed ID: 19128180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex DNA binding kinetics resolved by combined circular dichroism and luminescence analysis.
    Westerlund F; Nordell P; Blechinger J; Santos TM; Nordén B; Lincoln P
    J Phys Chem B; 2008 May; 112(21):6688-94. PubMed ID: 18452328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of quantum dot's quantum yield to chemiluminescent resonance energy transfer.
    Wang HQ; Li YQ; Wang JH; Xu Q; Li XQ; Zhao YD
    Anal Chim Acta; 2008 Mar; 610(1):68-73. PubMed ID: 18267141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Color modulation for intramolecular charge-transfer-induced chemiluminescence of 1,2-dioxetanes.
    Matsumoto M; Watanabe N; Hoshiya N; Ijuin HK
    Chem Rec; 2008; 8(4):213-28. PubMed ID: 18752319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reaction mechanism for the high quantum yield of Cypridina (Vargula) bioluminescence supported by the chemiluminescence of 6-aryl-2-methylimidazo[1,2-a]pyrazin-3(7H)-ones (Cypridina luciferin analogues).
    Hirano T; Takahashi Y; Kondo H; Maki S; Kojima S; Ikeda H; Niwa H
    Photochem Photobiol Sci; 2008 Feb; 7(2):197-207. PubMed ID: 18264587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired supramolecular confinement of luminol and heme proteins to enhance the chemiluminescent quantum yield.
    Wang Q; Li L; Xu B
    Chemistry; 2009; 15(13):3168-72. PubMed ID: 19206114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial luminescence: luminescence mechanism with cyclic peroxide participation and dependence on reactive oxygen species (a hypothesis).
    Dmitriev LF
    Biochimie; 2000 Mar; 82(3):237-44. PubMed ID: 10863007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of CO
    Garcia-Iriepa C; Marazzi M; Navizet I
    Phys Chem Chem Phys; 2020 Dec; 22(46):26787-26795. PubMed ID: 33211036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utility of Eucalyptus tereticornis (Smith) bark and Desulfotomaculum nigrificans for the remediation of acid mine drainage.
    Chockalingam E; Subramanian S
    Bioresour Technol; 2009 Jan; 100(2):615-21. PubMed ID: 18760595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of high aspect ratio quantum-size CdS nanorods and their surface-dependent photoluminescence.
    Saunders AE; Ghezelbash A; Sood P; Korgel BA
    Langmuir; 2008 Aug; 24(16):9043-9. PubMed ID: 18616312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and photoluminescence of ZnS quantum dots.
    Wang YH; Chen Z; Zhou XQ
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1312-5. PubMed ID: 18468145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.