BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 18219423)

  • 1. Selective and diagnostic labelling of serine hydrolases with reactive phosphonate inhibitors.
    Dijkstra HP; Sprong H; Aerts BN; Kruithof CA; Egmond MR; Klein Gebbink RJ
    Org Biomol Chem; 2008 Feb; 6(3):523-31. PubMed ID: 18219423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, synthesis, and evaluation of gamma-phosphono diester analogues of glutamate as highly potent inhibitors and active site probes of gamma-glutamyl transpeptidase.
    Han L; Hiratake J; Kamiyama A; Sakata K
    Biochemistry; 2007 Feb; 46(5):1432-47. PubMed ID: 17260973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expedited solid-phase synthesis of fluorescently labeled and biotinylated aminoalkane diphenyl phosphonate affinity probes for chymotrypsin- and elastase-like serine proteases.
    Gilmore BF; Quinn DJ; Duff T; Cathcart GR; Scott CJ; Walker B
    Bioconjug Chem; 2009 Nov; 20(11):2098-105. PubMed ID: 19810697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, kinetic evaluation, and utilization of a biotinylated dipeptide proline diphenyl phosphonate for the disclosure of dipeptidyl peptidase IV-like serine proteases.
    Gilmore BF; Carson L; McShane LL; Quinn D; Coulter WA; Walker B
    Biochem Biophys Res Commun; 2006 Aug; 347(1):373-9. PubMed ID: 16824486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel fluorescent phosphonic acid esters for discrimination of lipases and esterases.
    Schmidinger H; Birner-Gruenberger R; Riesenhuber G; Saf R; Susani-Etzerodt H; Hermetter A
    Chembiochem; 2005 Oct; 6(10):1776-81. PubMed ID: 16094692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A para-nitrophenol phosphonate probe labels distinct serine hydrolases of Arabidopsis.
    Nickel S; Kaschani F; Colby T; van der Hoorn RA; Kaiser M
    Bioorg Med Chem; 2012 Jan; 20(2):601-6. PubMed ID: 21763150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile library of activity-based probes for fluorescence detection and/or affinity isolation of lipolytic enzymes.
    Susani-Etzerodt H; Schmidinger H; Riesenhuber G; Birner-Gruenberger R; Hermetter A
    Chem Phys Lipids; 2006 Oct; 144(1):60-8. PubMed ID: 16949065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A new method for synthesis of some nucleoside 5'-phosphonate esters].
    Khropov IuV; Guliaev NN; Severin ES
    Biokhimiia; 1977 Oct; 42(10):1742-6. PubMed ID: 922063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic fluorescence reagents in the study of enzymes and proteins.
    Kanaoka Y
    Angew Chem Int Ed Engl; 1977 Mar; 16(3):137-47. PubMed ID: 404936
    [No Abstract]   [Full Text] [Related]  

  • 10. Synthesis and testing of mechanism-based protein-profiling probes for retaining endo-glycosidases.
    Williams SJ; Hekmat O; Withers SG
    Chembiochem; 2006 Jan; 7(1):116-24. PubMed ID: 16397879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-based protein profiling of infected plants.
    Kaschani F; Gu C; van der Hoorn RA
    Methods Mol Biol; 2012; 835():47-59. PubMed ID: 22183646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and testing of trifluoromethyl-containing phosphonate-peptide conjugates as inhibitors of serine hydrolases.
    Sokolova NV; Nenajdenko VG; Sokolov VB; Serebryakova OG; Makhaeva GF
    Bioorg Med Chem Lett; 2011 Dec; 21(23):7216-8. PubMed ID: 22001085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A designed protein for the specific and covalent heteroconjugation of biomolecules.
    Chidley C; Mosiewicz K; Johnsson K
    Bioconjug Chem; 2008 Sep; 19(9):1753-6. PubMed ID: 18754573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tagging and detection strategies for activity-based proteomics.
    Sadaghiani AM; Verhelst SH; Bogyo M
    Curr Opin Chem Biol; 2007 Feb; 11(1):20-8. PubMed ID: 17174138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis, and in vitro evaluation of an activity-based protein profiling (ABPP) probe targeting agmatine deiminases.
    Thomson A; O'Connor S; Knuckley B; Causey CP
    Bioorg Med Chem; 2014 Sep; 22(17):4602-8. PubMed ID: 25127464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery and Evaluation of New Activity-Based Probes for Serine Hydrolases.
    Wang C; Abegg D; Dwyer BG; Adibekian A
    Chembiochem; 2019 Sep; 20(17):2212-2216. PubMed ID: 30968522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling.
    Quinn JP; Kulakova AN; Cooley NA; McGrath JW
    Environ Microbiol; 2007 Oct; 9(10):2392-400. PubMed ID: 17803765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical approaches for functionally probing the proteome.
    Greenbaum D; Baruch A; Hayrapetian L; Darula Z; Burlingame A; Medzihradszky KF; Bogyo M
    Mol Cell Proteomics; 2002 Jan; 1(1):60-8. PubMed ID: 12096141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small, potent, and selective diaryl phosphonate inhibitors for urokinase-type plasminogen activator with in vivo antimetastatic properties.
    Joossens J; Ali OM; El-Sayed I; Surpateanu G; Van der Veken P; Lambeir AM; Setyono-Han B; Foekens JA; Schneider A; Schmalix W; Haemers A; Augustyns K
    J Med Chem; 2007 Dec; 50(26):6638-46. PubMed ID: 18052026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic affinity ligands as a novel tool to improve protein stability.
    Sousa IT; Ruiu L; Lowe CR; Taipa MA
    J Mol Recognit; 2009; 22(2):83-90. PubMed ID: 18654989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.