These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Fluorine-19 nuclear magnetic resonance studies of Escherichia coli membranes. Gent MP; Cottam PF; Ho C Proc Natl Acad Sci U S A; 1978 Feb; 75(2):630-4. PubMed ID: 345274 [TBL] [Abstract][Full Text] [Related]
63. Lipids, proteins, and their interplay in the dynamics of temperature-stressed membranes of a cyanobacterium, Synechocystis PCC 6803. Laczkó-Dobos H; Szalontai B Biochemistry; 2009 Oct; 48(42):10120-8. PubMed ID: 19788309 [TBL] [Abstract][Full Text] [Related]
64. Effects of temperature variation and phenethyl alcohol addition on acyl chain order and lipid organization in Escherichia coli derived membrane systems. A 2H- and 31P-NMR study. Killian JA; Fabrie CH; Baart W; Morein S; de Kruijff B Biochim Biophys Acta; 1992 Apr; 1105(2):253-62. PubMed ID: 1375100 [TBL] [Abstract][Full Text] [Related]
65. Fluorescence polarization studies on Escherichia coli membrane stability and its relation to the resistance of the cell to freeze-thawing. I. Membrane stability in cells of differing growth phase. Souzu H Biochim Biophys Acta; 1986 Oct; 861(2):353-60. PubMed ID: 3530327 [TBL] [Abstract][Full Text] [Related]
66. Impact of free hydroxylated and methyl-branched fatty acids on the organization of lipid membranes. Jenske R; Lindström F; Gröbner G; Vetter W Chem Phys Lipids; 2008 Jul; 154(1):26-32. PubMed ID: 18407834 [TBL] [Abstract][Full Text] [Related]
67. Lateral phase separations in membrane lipids and the mechanism of sugar transport in Escherichia coli. Linden CD; Wright KL; McConnell HM; Fox CF Proc Natl Acad Sci U S A; 1973 Aug; 70(8):2271-5. PubMed ID: 4365369 [TBL] [Abstract][Full Text] [Related]
68. The effect of dietary lipids on the thermotropic behaviour of rat liver and heart mitochondrial membrane lipids. McMurchie EJ; Abeywardena MY; Charnock JS; Gibson RA Biochim Biophys Acta; 1983 Sep; 734(1):114-24. PubMed ID: 6615826 [TBL] [Abstract][Full Text] [Related]
69. The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. McElhaney RN Chem Phys Lipids; 1982 May; 30(2-3):229-59. PubMed ID: 7046969 [TBL] [Abstract][Full Text] [Related]
70. Distribution of phospholipid molecular species in outer and cytoplasmic membrane of Escherichia coli. Ishinaga M; Kanamoto R; Kito M J Biochem; 1979 Jul; 86(1):161-5. PubMed ID: 383707 [TBL] [Abstract][Full Text] [Related]
71. Spin label ESR and 31P-NMR studies of the cubic and inverted hexagonal phases of dimyristoylphosphatidylcholine/myristic acid (1:2, mol/mol) mixtures. Rama Krishna YV; Marsh D Biochim Biophys Acta; 1990 May; 1024(1):89-94. PubMed ID: 2159807 [TBL] [Abstract][Full Text] [Related]
72. Studies of the thermotropic phase behavior of phosphatidylcholines containing 2-alkyl substituted fatty acyl chains: a new class of phosphatidylcholines forming inverted nonlamellar phases. Lewis RN; McElhaney RN; Harper PE; Turner DC; Gruner SM Biophys J; 1994 Apr; 66(4):1088-103. PubMed ID: 8038381 [TBL] [Abstract][Full Text] [Related]
73. Regulation of the fatty acid composition of the membrane phospholipids of Escherichia coli. Cronan JE Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3758-62. PubMed ID: 4610585 [TBL] [Abstract][Full Text] [Related]
74. A calorimetry and deuterium NMR study of mixed model membranes of 1-palmitoyl-2-oleylphosphatidylcholine and saturated phosphatidylcholines. Curatolo W; Sears B; Neuringer LJ Biochim Biophys Acta; 1985 Jul; 817(2):261-70. PubMed ID: 4016105 [TBL] [Abstract][Full Text] [Related]
75. Thermotropic phase behavior of phosphatidylcholines with omega-tertiary-butyl fatty acyl chains. Lewis RN; Mantsch HH; McElhaney RN Biophys J; 1989 Jul; 56(1):183-93. PubMed ID: 2752087 [TBL] [Abstract][Full Text] [Related]
76. The influence of unsaturation on the phase transition temperatures of a series of heteroacid phosphatidylcholines containing twenty-carbon chains. Keough KM; Giffin B; Kariel N Biochim Biophys Acta; 1987 Aug; 902(1):1-10. PubMed ID: 3111533 [TBL] [Abstract][Full Text] [Related]
77. Hydrophobic membrane thickness and lipid-protein interactions of the leucine transport system of Lactococcus lactis. In 't Veld G; Driessen AJ; Op den Kamp JA; Konings WN Biochim Biophys Acta; 1991 Jun; 1065(2):203-12. PubMed ID: 1905573 [TBL] [Abstract][Full Text] [Related]
78. Properties of unusual phospholipids: I. Synthesis, monolayer investigations and calorimetry of diacylglycerophosphocholines containing monoacetylenic acyl chains. Rürup J; Mannova M; Brezesinski G; Schmid RD Chem Phys Lipids; 1994 Apr; 70(2):187-98. PubMed ID: 8033290 [TBL] [Abstract][Full Text] [Related]
79. On the miscibility of cardiolipin with 1,2-diacyl phosphoglycerides: binary mixtures of dimyristoylphosphatidylethanolamine and tetramyristoylcardiolipin. Frias M; Benesch MG; Lewis RN; McElhaney RN Biochim Biophys Acta; 2011 Mar; 1808(3):774-83. PubMed ID: 21182822 [TBL] [Abstract][Full Text] [Related]
80. Multiple thermotropic phase transitions in Escherichia coli membranes and membrane lipids. A comparison of results obtained by nitroxyl stearate paramagnetic resonance, pyrene excimer fluorescence, and enzyme activity measurements. Morrisett JD; Pownall HJ; Plumlee RT; Smith LC; Zehner ZE J Biol Chem; 1975 Sep; 250(17):6969-76. PubMed ID: 169264 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]