These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 182201)

  • 101. E. coli membrane lipid alteration affecting T4 capsid morphogenesis.
    Simon LD; McLaughlin TJ; Snover D; Ou J; Grisham C; Loeb M
    Nature; 1975 Jul; 256(5516):379-83. PubMed ID: 167290
    [No Abstract]   [Full Text] [Related]  

  • 102. Calorimetric studies and molecular mechanics simulations of monounsaturated phosphatidylethanolamine bilayers.
    Wang ZQ; Lin HN; Li S; Huang CH
    J Biol Chem; 1994 Sep; 269(38):23491-9. PubMed ID: 8089115
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Mechanistic interpretation of the influence of lipid phase transitions on transport functions.
    Thilo L; Träuble H; Overath P
    Biochemistry; 1977 Apr; 16(7):1283-90. PubMed ID: 321017
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Thermotropic behavior of galactosylceramides with cis-monoenoic fatty acyl chains.
    Kulkarni VS; Brown RE
    Biochim Biophys Acta; 1998 Jul; 1372(2):347-58. PubMed ID: 9675335
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Membrane deenergization by colicin K affects fluorescence of exogenously added but not biosynthetically esterified parinaric acid probes in Escherichia coli.
    Tecoma ES; Wu D
    J Bacteriol; 1980 Jun; 142(3):931-8. PubMed ID: 6991495
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Calorimetric studies of phosphatidylethanolamines with saturated sn-1 and dienoic sn-2 Acyl chains.
    Li S; Wang G; Lin H; Huang CH
    J Biol Chem; 1998 Jul; 273(30):19009-18. PubMed ID: 9668081
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Characterization of octapeptin-membrane interactions using spin-labeled octapeptin.
    Swanson PE; Paddy MR; Dahlquist FW; Storm DR
    Biochemistry; 1980 Jul; 19(14):3307-14. PubMed ID: 6250564
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Seasonal changes in thermotropic behavior of phosphatidylcholine and phosphatidylethanolamine in different organs of the ascidian Halocynthia aurantium.
    Sanina NM; Kostetsky EY
    Comp Biochem Physiol B Biochem Mol Biol; 2001 Feb; 128(2):295-305. PubMed ID: 11207443
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Biophysical properties of a major membrane phospholipid, dielaidoylphosphatidylethanolamine, found in an Escherichia coli fatty acid auxotroph.
    Yang RD; Patel KM; Pownall HJ; Knapp RD; Sklar LA; Crawford RB; Morrisett JD
    J Biol Chem; 1979 Sep; 254(17):8256-62. PubMed ID: 224048
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Alteration of fatty acid composition in a pgsA3 mutant of Escherichia coli.
    Suzuki E; Mizushima T; Sekimizu K
    Biol Pharm Bull; 1997 May; 20(5):479-81. PubMed ID: 9178924
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Mixed-chain phospholipids: structures and chain-melting behavior.
    Huang CH
    Lipids; 2001 Oct; 36(10):1077-97. PubMed ID: 11768152
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Conditions influencing formation of 16:0/16:0 molecular species in membrane phospholipids of Escherichia coli.
    Lau C; Greenway DL; Freter CE; Neungton N; Wattenberg B; Silbert DF
    J Biol Chem; 1983 Nov; 258(21):13027-33. PubMed ID: 6355101
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Isolation of temperature-sensitive membrane mutants of Escherichia coli K-12.
    Steenbakkers JF; Broekman JH; Kerkenaar A; de Haan PG
    J Bacteriol; 1973 Nov; 116(2):535-40. PubMed ID: 4583239
    [TBL] [Abstract][Full Text] [Related]  

  • 114. X-ray analysis of the kinetics of Escherichia coli lipid and membrane structural transitions.
    Ranck JL; Letellier L; Shechter E; Krop B; Pernot P; Tardieu A
    Biochemistry; 1984 Oct; 23(21):4955-61. PubMed ID: 6388638
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Phase behavior of synthetic N-acylethanolamine phospholipids.
    Newman JL; Stiers DL; Anderson WH; Schmid HH
    Chem Phys Lipids; 1986 Dec; 42(4):249-60. PubMed ID: 3829207
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Changes in the chemical and the barrier properties of the membrane lipids of E. coli by variation of the temperature of growth.
    Haest CW; de Gier J; van Deenen LL
    Chem Phys Lipids; 1969 Dec; 3(4):413-7. PubMed ID: 4905515
    [No Abstract]   [Full Text] [Related]  

  • 117. Effect of phase transitions on the interaction of peptides and proteins with phospholipids.
    Epand RM; Surewicz WK
    Can J Biochem Cell Biol; 1984 Nov; 62(11):1167-73. PubMed ID: 6525567
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Independence of deoxyribonucleic acid replication and initiation from membrane fluidity and the supply of unsaturated fatty acids in Escherichia coli.
    Thilo L; Vielmetter W
    J Bacteriol; 1976 Oct; 128(1):130-43. PubMed ID: 789329
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Changes induced by glucose in the plasma membrane properties of pancreatic islets.
    Cortizo AM; Paladini A; Díaz GB; García ME; Gagliardino JJ
    Mol Cell Endocrinol; 1990 May; 71(1):49-54. PubMed ID: 2194869
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Structure and synthesis of a lipid-containing bacteriophage. Effects of lipids containing cis or trans fatty acids on the reconstitution of bacteriophage PM2.
    Tsukagoshi N; Schäfer R; Franklin RM
    Eur J Biochem; 1977 Mar; 73(2):469-76. PubMed ID: 849743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.