These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 18220357)
1. Kinetic and physical evidence that the diheme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed tryptophan tryptophylquinone. Li X; Fu R; Liu A; Davidson VL Biochemistry; 2008 Mar; 47(9):2908-12. PubMed ID: 18220357 [TBL] [Abstract][Full Text] [Related]
2. Further insights into quinone cofactor biogenesis: probing the role of mauG in methylamine dehydrogenase tryptophan tryptophylquinone formation. Pearson AR; De La Mora-Rey T; Graichen ME; Wang Y; Jones LH; Marimanikkupam S; Agger SA; Grimsrud PA; Davidson VL; Wilmot CM Biochemistry; 2004 May; 43(18):5494-502. PubMed ID: 15122915 [TBL] [Abstract][Full Text] [Related]
3. In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex. Jensen LM; Sanishvili R; Davidson VL; Wilmot CM Science; 2010 Mar; 327(5971):1392-4. PubMed ID: 20223990 [TBL] [Abstract][Full Text] [Related]
4. Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis. Tarboush NA; Jensen LM; Yukl ET; Geng J; Liu A; Wilmot CM; Davidson VL Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16956-61. PubMed ID: 21969534 [TBL] [Abstract][Full Text] [Related]
5. The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis. Shin S; Feng M; Chen Y; Jensen LM; Tachikawa H; Wilmot CM; Liu A; Davidson VL Biochemistry; 2011 Jan; 50(1):144-50. PubMed ID: 21128656 [TBL] [Abstract][Full Text] [Related]
6. Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification. Davidson VL; Liu A Biochim Biophys Acta; 2012 Nov; 1824(11):1299-305. PubMed ID: 22314272 [TBL] [Abstract][Full Text] [Related]
7. Structures of MauG in complex with quinol and quinone MADH. Yukl ET; Jensen LM; Davidson VL; Wilmot CM Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jul; 69(Pt 7):738-43. PubMed ID: 23832199 [TBL] [Abstract][Full Text] [Related]
8. Kinetic mechanism for the initial steps in MauG-dependent tryptophan tryptophylquinone biosynthesis. Lee S; Shin S; Li X; Davidson VL Biochemistry; 2009 Mar; 48(11):2442-7. PubMed ID: 19196017 [TBL] [Abstract][Full Text] [Related]
9. Posttranslational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone. Davidson VL; Wilmot CM Annu Rev Biochem; 2013; 82():531-50. PubMed ID: 23746262 [TBL] [Abstract][Full Text] [Related]
10. Isotope labeling studies reveal the order of oxygen incorporation into the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase. Pearson AR; Marimanikkuppam S; Li X; Davidson VL; Wilmot CM J Am Chem Soc; 2006 Sep; 128(38):12416-7. PubMed ID: 16984182 [TBL] [Abstract][Full Text] [Related]
11. A Trp199Glu MauG variant reveals a role for Trp199 interactions with pre-methylamine dehydrogenase during tryptophan tryptophylquinone biosynthesis. Abu Tarboush N; Jensen LM; Wilmot CM; Davidson VL FEBS Lett; 2013 Jun; 587(12):1736-41. PubMed ID: 23669364 [TBL] [Abstract][Full Text] [Related]
12. Proline 107 is a major determinant in maintaining the structure of the distal pocket and reactivity of the high-spin heme of MauG. Feng M; Jensen LM; Yukl ET; Wei X; Liu A; Wilmot CM; Davidson VL Biochemistry; 2012 Feb; 51(8):1598-606. PubMed ID: 22299652 [TBL] [Abstract][Full Text] [Related]
13. MauG-dependent in vitro biosynthesis of tryptophan tryptophylquinone in methylamine dehydrogenase. Wang Y; Li X; Jones LH; Pearson AR; Wilmot CM; Davidson VL J Am Chem Soc; 2005 Jun; 127(23):8258-9. PubMed ID: 15941239 [TBL] [Abstract][Full Text] [Related]
14. Crystal structures of CO and NO adducts of MauG in complex with pre-methylamine dehydrogenase: implications for the mechanism of dioxygen activation. Yukl ET; Goblirsch BR; Davidson VL; Wilmot CM Biochemistry; 2011 Apr; 50(14):2931-8. PubMed ID: 21355604 [TBL] [Abstract][Full Text] [Related]
15. MauG, a novel diheme protein required for tryptophan tryptophylquinone biogenesis. Wang Y; Graichen ME; Liu A; Pearson AR; Wilmot CM; Davidson VL Biochemistry; 2003 Jun; 42(24):7318-25. PubMed ID: 12809487 [TBL] [Abstract][Full Text] [Related]
16. Structure, function, and applications of tryptophan tryptophylquinone enzymes. Davidson VL Adv Exp Med Biol; 1999; 467():587-95. PubMed ID: 10721104 [TBL] [Abstract][Full Text] [Related]
17. Mutation of Trp(93) of MauG to tyrosine causes loss of bound Ca(2+) and alters the kinetic mechanism of tryptophan tryptophylquinone cofactor biosynthesis. Shin S; Feng M; Davidson VL Biochem J; 2013 Nov; 456(1):129-37. PubMed ID: 24024544 [TBL] [Abstract][Full Text] [Related]
18. Suicide inactivation of MauG during reaction with O(2) or H(2)O(2) in the absence of its natural protein substrate. Shin S; Lee S; Davidson VL Biochemistry; 2009 Oct; 48(42):10106-12. PubMed ID: 19788236 [TBL] [Abstract][Full Text] [Related]
19. Active site aspartate residues are critical for tryptophan tryptophylquinone biogenesis in methylamine dehydrogenase. Jones LH; Pearson AR; Tang Y; Wilmot CM; Davidson VL J Biol Chem; 2005 Apr; 280(17):17392-6. PubMed ID: 15734739 [TBL] [Abstract][Full Text] [Related]
20. Long-range electron transfer reactions between hemes of MauG and different forms of tryptophan tryptophylquinone of methylamine dehydrogenase. Shin S; Abu Tarboush N; Davidson VL Biochemistry; 2010 Jul; 49(27):5810-6. PubMed ID: 20540536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]