These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 18220369)

  • 61. Nano-architectures by covalent assembly of molecular building blocks.
    Grill L; Dyer M; Lafferentz L; Persson M; Peters MV; Hecht S
    Nat Nanotechnol; 2007 Nov; 2(11):687-91. PubMed ID: 18654406
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Simultaneous targeted immobilization of anti-human IgG-coated nanotubes and anti-mouse IgG-coated nanotubes on the complementary antigen-patterned surfaces via biological molecular recognition.
    Zhao Z; Banerjee IA; Matsui H
    J Am Chem Soc; 2005 Jun; 127(25):8930-1. PubMed ID: 15969552
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Protein A-based antibody immobilization onto polymeric microdevices for enhanced sensitivity of enzyme-linked immunosorbent assay.
    Yuan Y; He H; Lee LJ
    Biotechnol Bioeng; 2009 Feb; 102(3):891-901. PubMed ID: 18942150
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Core-shell hybrid nanoparticles with functionalized quantum dots and ionic dyes: growth, monolayer formation, and electrical bistability.
    Das BC; Pal AJ
    ACS Nano; 2008 Sep; 2(9):1930-8. PubMed ID: 19206434
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The formation and characterization of cyclodextrin functionalized polystyrene nanofibers produced by electrospinning.
    Uyar T; Havelund R; Hacaloglu J; Zhou X; Besenbacher F; Kingshott P
    Nanotechnology; 2009 Mar; 20(12):125605. PubMed ID: 19420474
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Role of nanomechanical properties in the tribological performance of phospholipid biomimetic surfaces.
    Trunfio-Sfarghiu AM; Berthier Y; Meurisse MH; Rieu JP
    Langmuir; 2008 Aug; 24(16):8765-71. PubMed ID: 18620439
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Influence of nanotopography on phospholipid bilayer formation on silicon dioxide.
    Pfeiffer I; Seantier B; Petronis S; Sutherland D; Kasemo B; Zäch M
    J Phys Chem B; 2008 Apr; 112(16):5175-81. PubMed ID: 18370429
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tuning surface energies with nanopatterned substrates.
    Selhuber C; Blümmel J; Czerwinski F; Spatz JP
    Nano Lett; 2006 Feb; 6(2):267-70. PubMed ID: 16464048
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Oligonucleotide nanostructured surfaces: effect on Escherichia coli curli expression.
    Cottenye N; Teixeira F; Ponche A; Reiter G; Anselme K; Meier W; Ploux L; Vebert-Nardin C
    Macromol Biosci; 2008 Dec; 8(12):1161-72. PubMed ID: 18683166
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nanoscaled periodic surface structures of medical stainless steel and their effect on osteoblast cells.
    Elter P; Sickel F; Ewald A
    Acta Biomater; 2009 Jun; 5(5):1468-73. PubMed ID: 19250893
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Providing unique insight into cell biology via atomic force microscopy.
    Shahin V; Barrera NP
    Int Rev Cytol; 2008; 265():227-52. PubMed ID: 18275890
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The surface properties of nanocrystalline diamond and nanoparticulate diamond powder and their suitability as cell growth support surfaces.
    Lechleitner T; Klauser F; Seppi T; Lechner J; Jennings P; Perco P; Mayer B; Steinmüller-Nethl D; Preiner J; Hinterdorfer P; Hermann M; Bertel E; Pfaller K; Pfaller W
    Biomaterials; 2008 Nov; 29(32):4275-84. PubMed ID: 18701160
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Controllable peptide-dendron self-assembly: interconversion of nanotubes and fibrillar nanostructures.
    Shao H; Parquette JR
    Angew Chem Int Ed Engl; 2009; 48(14):2525-8. PubMed ID: 19248060
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An investigation of antibody immobilization methods employing organosilanes on planar ZnO surfaces for biosensor applications.
    Corso CD; Dickherber A; Hunt WD
    Biosens Bioelectron; 2008 Dec; 24(4):811-7. PubMed ID: 18755581
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Selective immobilization of proteins on gold dot arrays and characterization using chemical force microscopy.
    Kim H; Park JH; Cho IH; Kim SK; Paek SH; Lee H
    J Colloid Interface Sci; 2009 Jun; 334(2):161-6. PubMed ID: 19406421
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions.
    Yang JY; Ting YC; Lai JY; Liu HL; Fang HW; Tsai WB
    J Biomed Mater Res A; 2009 Sep; 90(3):629-40. PubMed ID: 18563818
    [TBL] [Abstract][Full Text] [Related]  

  • 77. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 78. NTA directed protein nanopatterning on DNA Origami nanoconstructs.
    Shen W; Zhong H; Neff D; Norton ML
    J Am Chem Soc; 2009 May; 131(19):6660-1. PubMed ID: 19400586
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fluorescein isothiocyanate linked immunoabsorbent assay based on surface-enhanced resonance Raman scattering.
    Han XX; Cai LJ; Guo J; Wang CX; Ruan WD; Han WY; Xu WQ; Zhao B; Ozaki Y
    Anal Chem; 2008 Apr; 80(8):3020-4. PubMed ID: 18318511
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Micrometer- and nanometer-scale photopatterning using 2-nitrophenylpropyloxycarbonyl-protected aminosiloxane monolayers.
    Ahmad SA; Wong LS; ul-Haq E; Hobbs JK; Leggett GJ; Micklefield J
    J Am Chem Soc; 2009 Feb; 131(4):1513-22. PubMed ID: 19173668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.