These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 182209)
21. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds. Jakubowski H; Pawelkiewicz J Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427 [TBL] [Abstract][Full Text] [Related]
22. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Fukai S; Nureki O; Sekine S; Shimada A; Tao J; Vassylyev DG; Yokoyama S Cell; 2000 Nov; 103(5):793-803. PubMed ID: 11114335 [TBL] [Abstract][Full Text] [Related]
23. Isoleucyl-tRNA synthetase from Baker's yeast. Catalytic mechanism, 2',3'-specificity and fidelity in aminoacylation of tRNAIle with isoleucine and valine investigated with initial-rate kinetics using analogs of tRNA, ATP and amino acids. Freist W; Cramer F Eur J Biochem; 1983 Mar; 131(1):65-80. PubMed ID: 6339236 [TBL] [Abstract][Full Text] [Related]
24. Valyl-tRNA, isoleucyl-tRNA and tyrosyl-tRNA synthetase from baker's yeast. Substrate specificity with regard to ATP analogs and mechanism of the aminoacylation reaction. Freist W; von der Haar F; Faulhammer H; Cramer F Eur J Biochem; 1976 Jul; 66(3):493-7. PubMed ID: 782885 [TBL] [Abstract][Full Text] [Related]
25. Mechanism of aminoacylation of tRNA. Proof of the aminoacyl adenylate pathway for the isoleucyl- and tyrosyl-tRNA synthetases from Escherichia coli K12. Fersht AR; Kaethner MM Biochemistry; 1976 Feb; 15(4):818-23. PubMed ID: 764868 [TBL] [Abstract][Full Text] [Related]
26. Transfer RNA determinants for translational editing by Escherichia coli valyl-tRNA synthetase. Tardif KD; Horowitz J Nucleic Acids Res; 2002 Jun; 30(11):2538-45. PubMed ID: 12034843 [TBL] [Abstract][Full Text] [Related]
27. Fluorometric study on the interaction of amino acids and ATP with valyl-tRNA synthetase from Bacillus stearothermophilus. Kakitani M; Tonomura B; Hiromi K J Biochem; 1987 Feb; 101(2):477-84. PubMed ID: 3584095 [TBL] [Abstract][Full Text] [Related]
28. Site-directed mutagenesis reveals transition-state stabilization as a general catalytic mechanism for aminoacyl-tRNA synthetases. Borgford TJ; Gray TE; Brand NJ; Fersht AR Biochemistry; 1987 Nov; 26(23):7246-50. PubMed ID: 3427072 [TBL] [Abstract][Full Text] [Related]
30. [The formation of ATP from adenosine 5'-phosphoroimidazolide and pyrophosphate catalyzed by valyl-tRNA-synthetase]. Biriukov AI; Osipova TI; Khomutov RM Biokhimiia; 1976 Oct; 41(10):1905-6. PubMed ID: 192333 [TBL] [Abstract][Full Text] [Related]
31. Ligand binding stoichiometries, subunit structure, and slow transitions in aminoacyl-tRNA synthetases. Mulvey RS; Fersht AR Biochemistry; 1977 Sep; 16(18):4005-13. PubMed ID: 199234 [No Abstract] [Full Text] [Related]
32. ATP binding plays a role in the selection of amino acid substrate by aminoacyl-tRNA synthetases. Tonomura B; Kakitani M; Ohkubo Y; Shima H; Hiromi K Ann N Y Acad Sci; 1990; 613():489-93. PubMed ID: 2075999 [No Abstract] [Full Text] [Related]
33. Aminoacyl-tRNA synthetases from yeast: generality of chemical proofreading in the prevention of misaminoacylation of tRNA. Igloi GL; von der Haar F; Cramer F Biochemistry; 1978 Aug; 17(17):3459-68. PubMed ID: 356880 [TBL] [Abstract][Full Text] [Related]
34. tRNA-dependent aminoacyl-adenylate hydrolysis by a nonediting class I aminoacyl-tRNA synthetase. Gruic-Sovulj I; Uter N; Bullock T; Perona JJ J Biol Chem; 2005 Jun; 280(25):23978-86. PubMed ID: 15845536 [TBL] [Abstract][Full Text] [Related]
35. The 32PPi--ATP isotope-exchange reaction catalyzed by the yeast valyl-tRNA synthetase: order of substrate binding and effect of tRNA. Kern D; Giegé R FEBS Lett; 1979 Jul; 103(2):274-81. PubMed ID: 223884 [No Abstract] [Full Text] [Related]
36. A quenched-flow apparatus which allows the measurement of the kinetics of a reaction in one stroke. Gangloff J; Pouyet J; Kern D; Dirheimer G J Biochem Biophys Methods; 1984 Jul; 9(3):201-13. PubMed ID: 6236252 [TBL] [Abstract][Full Text] [Related]
37. Interpretation of incomplete reactions in tRNA aminoacylation. Aminoacylation of yeast tRNA Val II with yeast valyl-tRNA synthetase. Bonnet J; Ebel JP Eur J Biochem; 1972 Dec; 31(2):335-44. PubMed ID: 4567121 [No Abstract] [Full Text] [Related]
38. Seryl-, threonyl-, valyl-, and isoleucyl-tRNA synthetases from baker's yeast: role of the 3'-terminal adenosine in the dynamic recognition of tRNA. von der Haar F; Cramer F Biochemistry; 1978 Jul; 17(15):3139-45. PubMed ID: 359040 [No Abstract] [Full Text] [Related]
39. Effect of heavy water substitution for water on the tRNAVal-valyl-tRNA synthetase system from yeast. Kern D; Zaccaí G; Giegé R Biochemistry; 1980 Jul; 19(14):3158-64. PubMed ID: 6996700 [No Abstract] [Full Text] [Related]
40. The plant aminoacyl-tRNA synthetases. 2'-DeoxyATP and ATP in reactions catalysed by yellow lupin aminoacyl-tRNA synthetases. Jakubowski H Acta Biochim Pol; 1980; 27(3-4):321-33. PubMed ID: 7269975 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]