These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18220973)

  • 1. Simulation of sequential screening experiments using emerging chemical patterns.
    Auer J; Bajorath J
    Med Chem; 2008 Jan; 4(1):80-90. PubMed ID: 18220973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging chemical patterns: a new methodology for molecular classification and compound selection.
    Auer J; Bajorath J
    J Chem Inf Model; 2006; 46(6):2502-14. PubMed ID: 17125191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual screening against Mycobacterium tuberculosis dihydrofolate reductase: suggested workflow for compound prioritization using structure interaction fingerprints.
    Kumar A; Siddiqi MI
    J Mol Graph Model; 2008 Nov; 27(4):476-88. PubMed ID: 18829358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consensus scoring criteria for improving enrichment in virtual screening.
    Yang JM; Chen YF; Shen TW; Kristal BS; Hsu DF
    J Chem Inf Model; 2005; 45(4):1134-46. PubMed ID: 16045308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fighting high molecular weight in bioactive molecules with sub-pharmacophore-based virtual screening.
    von Korff M; Freyss J; Sander T; Boss C; Ciana CL
    J Chem Inf Model; 2012 Feb; 52(2):380-90. PubMed ID: 22251316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. REPROVIS-DB: a benchmark system for ligand-based virtual screening derived from reproducible prospective applications.
    Ripphausen P; Wassermann AM; Bajorath J
    J Chem Inf Model; 2011 Oct; 51(10):2467-73. PubMed ID: 21902278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Outlier mining in high throughput screening experiments.
    Engels MF; Wouters L; Verbeeck R; Vanhoof G
    J Biomol Screen; 2002 Aug; 7(4):341-51. PubMed ID: 12230888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel in silico approach to drug discovery via computational intelligence.
    Hecht D; Fogel GB
    J Chem Inf Model; 2009 Apr; 49(4):1105-21. PubMed ID: 19348414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual screening methods that complement HTS.
    Stahura FL; Bajorath J
    Comb Chem High Throughput Screen; 2004 Jun; 7(4):259-69. PubMed ID: 15200375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-high-throughput screening analysis: an empirical compound prioritization scheme.
    Oprea TI; Bologa CG; Edwards BS; Prossnitz ER; Sklar LA
    J Biomol Screen; 2005 Aug; 10(5):419-26. PubMed ID: 16093551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional quantitative structure-activity relationship analysis of a set of Plasmodium falciparum dihydrofolate reductase inhibitors using a pharmacophore generation approach.
    Parenti MD; Pacchioni S; Ferrari AM; Rastelli G
    J Med Chem; 2004 Aug; 47(17):4258-67. PubMed ID: 15293997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental design strategy: weak reinforcement leads to increased hit rates and enhanced chemical diversity.
    Maciejewski M; Wassermann AM; Glick M; Lounkine E
    J Chem Inf Model; 2015 May; 55(5):956-62. PubMed ID: 25915687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FieldChopper, a new tool for automatic model generation and virtual screening based on molecular fields.
    Kalliokoski T; Ronkko T; Poso A
    J Chem Inf Model; 2008 Jun; 48(6):1131-7. PubMed ID: 18489083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physics-based scoring of protein-ligand complexes: enrichment of known inhibitors in large-scale virtual screening.
    Huang N; Kalyanaraman C; Irwin JJ; Jacobson MP
    J Chem Inf Model; 2006; 46(1):243-53. PubMed ID: 16426060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the MAD algorithm for virtual screening.
    Eckert H; Bajorath J
    Methods Mol Biol; 2008; 453():349-62. PubMed ID: 18712313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel technologies for virtual screening.
    Lengauer T; Lemmen C; Rarey M; Zimmermann M
    Drug Discov Today; 2004 Jan; 9(1):27-34. PubMed ID: 14761803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical comparison of virtual screening methods against the MUV data set.
    Tiikkainen P; Markt P; Wolber G; Kirchmair J; Distinto S; Poso A; Kallioniemi O
    J Chem Inf Model; 2009 Oct; 49(10):2168-78. PubMed ID: 19799417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of structure-based virtual screening studies and characterization of identified active compounds.
    Ripphausen P; Stumpfe D; Bajorath J
    Future Med Chem; 2012 Apr; 4(5):603-13. PubMed ID: 22458680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting antitrichomonal activity: a computational screening using atom-based bilinear indices and experimental proofs.
    Marrero-Ponce Y; Meneses-Marcel A; Castillo-Garit JA; Machado-Tugores Y; Escario JA; Barrio AG; Pereira DM; Nogal-Ruiz JJ; Arán VJ; Martínez-Fernández AR; Torrens F; Rotondo R; Ibarra-Velarde F; Alvarado YJ
    Bioorg Med Chem; 2006 Oct; 14(19):6502-24. PubMed ID: 16875830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Chemical Compound Libraries for In Silico Drug Screening.
    Fukunishi Y; Lintuluoto M
    Curr Comput Aided Drug Des; 2010; 6(2):90-102. PubMed ID: 20402662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.