These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 182210)

  • 1. Essential arginyl residues in fructose-1,6-bisphosphatase.
    Marcus F
    Biochemistry; 1976 Aug; 15(16):3505-9. PubMed ID: 182210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional consequences of modifying highly reactive arginyl residues of fructose 1,6-bisphosphatase. Loss of monovalent cation activation.
    Marcus F
    Biochemistry; 1975 Aug; 14(17):3916-21. PubMed ID: 169892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of fructose-1,6-bisphosphatases by monovalent cations and its relationship with a fructose-2,6-bisphosphate allosteric site.
    Slebe JC; Reyes A; Hubert E
    Arch Biol Med Exp; 1985 Dec; 18(3-4):309-15. PubMed ID: 3019247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reactive cysteine residue of pig kidney fructose 1,6-bisphosphatase is related to a fructose 2,6-bisphosphate allosteric site.
    Reyes A; Hubert E; Slebe JC
    Biochem Biophys Res Commun; 1985 Feb; 127(1):373-9. PubMed ID: 2983717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of essential arginyl residues in cytoplasmic malate dehydrogenase with butanedione.
    Bleile DM; Foster M; Brady JW; Harrison JH
    J Biol Chem; 1975 Aug; 250(16):6222-7. PubMed ID: 1158861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium activation and its relationship to a highly reactive cysteine residue in fructose 1,6-bisphosphatase.
    Hubert E; Ojeda A; Reyes A; Slebe JC
    Arch Biochem Biophys; 1986 Nov; 250(2):336-44. PubMed ID: 3022647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective thiol group modification renders fructose-1,6-bisphosphatase insensitive to fructose 2,6-bisphosphate inhibition.
    Reyes A; Burgos ME; Hubert E; Slebe JC
    J Biol Chem; 1987 Jun; 262(18):8451-4. PubMed ID: 3036815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the highly reactive sulfhydryl group of pig kidney fructose 1,6-bisphosphatase at cysteine 128.
    Chatterjee T; Edelstein I; Marcus F; Eby J; Reardon I; Heinrikson RL
    J Biol Chem; 1984 Mar; 259(6):3834-7. PubMed ID: 6323443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The C1-C2 interface residue lysine 50 of pig kidney fructose-1, 6-bisphosphatase has a crucial role in the cooperative signal transmission of the AMP inhibition.
    Cárcamo JG; Yañez AJ; Ludwig HC; León O; Pinto RO; Reyes AM; Slebe JC
    Eur J Biochem; 2000 Apr; 267(8):2242-51. PubMed ID: 10759847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Des-1-25-fructose-1,6-bisphosphatase, a nonallosteric derivative produced by trypsin treatment of the native protein.
    Chatterjee T; Reardon I; Heinrikson RL; Marcus F
    J Biol Chem; 1985 Nov; 260(25):13553-9. PubMed ID: 2997170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for an active T-state pig kidney fructose 1,6-bisphosphatase: interface residue Lys-42 is important for allosteric inhibition and AMP cooperativity.
    Lu G; Stec B; Giroux EL; Kantrowitz ER
    Protein Sci; 1996 Nov; 5(11):2333-42. PubMed ID: 8931152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginyl residues: anion recognition sites in enzymes.
    Riordan JF; McElvany KD; Borders CL
    Science; 1977 Mar; 195(4281):884-6. PubMed ID: 190679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational and allosteric changes in fructose 1,6-bisphosphatase upon photoaffinity labeling with 2-azidoadenosine monophosphate.
    Riquelme PT; Czarnecki JJ
    J Biol Chem; 1983 Jul; 258(13):8240-5. PubMed ID: 6305979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of kinetic AMP cooperativity of fructose-1,6-bisphosphatase by carbamoylation of lysine 50.
    Ludwig HC; Herrera R; Reyes AM; Hubert E; Slebe JC
    J Protein Chem; 1999 Jul; 18(5):533-45. PubMed ID: 10524771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of arginyl residues in yeast hexokinase PII.
    Borders CL; Cipollo KL; Jorkasky JF; Neet KE
    Biochemistry; 1978 Jun; 17(13):2654-8. PubMed ID: 354693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fructose-1,6-bisphosphatase: arginine-22 is involved in stabilization of the T allosteric state.
    Lu G; Williams MK; Giroux EL; Kantrowitz ER
    Biochemistry; 1995 Oct; 34(41):13272-7. PubMed ID: 7577911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An essential arginine residue in the active-site pocket of glycogen phosporylase.
    Li EC; Fletterick RJ; Sygusch J; Madsen NB
    Can J Biochem; 1977 Apr; 55(4):465-73. PubMed ID: 870152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of monovalent cations with fructose 1,6-bisphosphatase modified by N-ethylmaleimide and its relation with AMP inhibition.
    Reyes A; Rodríguez P; Slebe JC
    Biochem Int; 1992 Feb; 26(2):347-56. PubMed ID: 1558547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanisms of activation and inhibition of porcine liver fructose-1,6-bisphosphatase by monovalent cations.
    Zhang R; Villeret V; Lipscomb WN; Fromm HJ
    Biochemistry; 1996 Mar; 35(9):3038-43. PubMed ID: 8608143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.