BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18221011)

  • 1. Effect of Ca2+ on beta-propeller phytases.
    Fu S; Sun J; Qian L
    Protein Pept Lett; 2008; 15(1):39-42. PubMed ID: 18221011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Characteristics and Catalytic Mechanism of Bacillus β-Propeller Phytases.
    Balaban NP; Suleimanova AD; Valeeva LR; Shakirov EV; Sharipova MR
    Biochemistry (Mosc); 2016 Aug; 81(8):785-93. PubMed ID: 27677548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Propeller phytases: Diversity, catalytic attributes, current developments and potential biotechnological applications.
    Kumar V; Yadav AN; Verma P; Sangwan P; Saxena A; Kumar K; Singh B
    Int J Biol Macromol; 2017 May; 98():595-609. PubMed ID: 28174082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme mechanism and catalytic property of beta propeller phytase.
    Shin S; Ha NC; Oh BC; Oh TK; Oh BH
    Structure; 2001 Sep; 9(9):851-8. PubMed ID: 11566134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and biochemical characteristics of β-propeller phytase from marine Pseudomonas sp. BS10-3 and its potential application for animal feed additives.
    Nam SJ; Kim YO; Ko TK; Kang JK; Chun KH; Auh JH; Lee CS; Lee IK; Park S; Oh BC
    J Microbiol Biotechnol; 2014 Oct; 24(10):1413-20. PubMed ID: 25112322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical properties and substrate specificities of alkaline and histidine acid phytases.
    Oh BC; Choi WC; Park S; Kim YO; Oh TK
    Appl Microbiol Biotechnol; 2004 Jan; 63(4):362-72. PubMed ID: 14586576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states.
    Ha NC; Oh BC; Shin S; Kim HJ; Oh TK; Kim YO; Choi KY; Oh BH
    Nat Struct Biol; 2000 Feb; 7(2):147-53. PubMed ID: 10655618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tandemly repeated domains of a β-propeller phytase act synergistically to increase catalytic efficiency.
    Li Z; Huang H; Yang P; Yuan T; Shi P; Zhao J; Meng K; Yao B
    FEBS J; 2011 Sep; 278(17):3032-40. PubMed ID: 21707924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway of phytate dephosphorylation by beta-propeller phytases of different origins.
    Greiner R; Lim BL; Cheng C; Carlsson NG
    Can J Microbiol; 2007 Apr; 53(4):488-95. PubMed ID: 17612603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11.
    Oh BC; Chang BS; Park KH; Ha NC; Kim HK; Oh BH; Oh TK
    Biochemistry; 2001 Aug; 40(32):9669-76. PubMed ID: 11583167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacillus phytases: present scenario and future perspectives.
    Fu S; Sun J; Qian L; Li Z
    Appl Biochem Biotechnol; 2008 Oct; 151(1):1-8. PubMed ID: 18785018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of phytate by the 6-phytase from Hafnia alvei: a combined structural and solution study.
    Ariza A; Moroz OV; Blagova EV; Turkenburg JP; Waterman J; Roberts SM; Vind J; Sjøholm C; Lassen SF; De Maria L; Glitsoe V; Skov LK; Wilson KS
    PLoS One; 2013; 8(5):e65062. PubMed ID: 23741456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-terminal domain of the beta-propeller phytase of Pseudomonas sp. FB15 plays a role for retention of low-temperature activity and catalytic efficiency.
    Jang WJ; Lee JM; Park HD; Choi YB; Kong IS
    Enzyme Microb Technol; 2018 Oct; 117():84-90. PubMed ID: 30037556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism.
    Kerovuo J; Rouvinen J; Hatzack F
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):623-8. PubMed ID: 11104666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of Escherichia coli phytase and its complex with phytate.
    Lim D; Golovan S; Forsberg CW; Jia Z
    Nat Struct Biol; 2000 Feb; 7(2):108-13. PubMed ID: 10655611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple and fast kinetic assay for phytases using phytic acid-protein complex as substrate.
    Tran TT; Hatti-Kaul R; Dalsgaard S; Yu S
    Anal Biochem; 2011 Mar; 410(2):177-84. PubMed ID: 21050837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacillus phytases: Current status and future prospects.
    Borgi MA; Boudebbouze S; Mkaouar H; Maguin E; Rhimi M
    Bioengineered; 2015; 6(4):233-6. PubMed ID: 25946551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkaline phytase from lily pollen: Investigation of biochemical properties.
    Jog SP; Garchow BG; Mehta BD; Murthy PP
    Arch Biochem Biophys; 2005 Aug; 440(2):133-40. PubMed ID: 16051182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular advancements in the development of thermostable phytases.
    Rebello S; Jose L; Sindhu R; Aneesh EM
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2677-2689. PubMed ID: 28233043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis.
    Chu HM; Guo RT; Lin TW; Chou CC; Shr HL; Lai HL; Tang TY; Cheng KJ; Selinger BL; Wang AH
    Structure; 2004 Nov; 12(11):2015-24. PubMed ID: 15530366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.