These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18221067)

  • 1. Methodological aspects of erythrocyte aggregation.
    Pribush A; Meyerstein N
    Recent Pat Anticancer Drug Discov; 2007 Nov; 2(3):240-5. PubMed ID: 18221067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous influence of erythrocyte deformability and macromolecules in the medium on erythrocyte aggregation: a kinetic study by a laser scattering technique.
    Muralidharan E; Tateishi N; Maeda N
    Biochim Biophys Acta; 1994 Sep; 1194(2):255-63. PubMed ID: 7522564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductometric study of shear-dependent processes in red cell suspensions. I. Effect of red blood cell aggregate morphology on blood conductance.
    Pribush A; Meyerstein D; Meyerstein N
    Biorheology; 2004; 41(1):13-28. PubMed ID: 14967887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-Dispersion of blood during sedimentation.
    Sabuncu AC; Muldur S; Cetin B; Usta OB; Aubry N
    Sci Rep; 2021 Jan; 11(1):2642. PubMed ID: 33514847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation of red blood cells in suspension: study by light-scattering technique at small angles.
    Pop CV; Neamtu S
    J Biomed Opt; 2008; 13(4):041308. PubMed ID: 19021316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D; Frömer D
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new laser photometric technique for the measurement of erythrocyte aggregation and sedimentation kinetics.
    Muralidharan E; Tateishi N; Maeda N
    Biorheology; 1994; 31(3):277-85. PubMed ID: 8729487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of N-methyl D-aspartate (NMDA) receptors has no influence on rheological properties of erythrocytes.
    Reinhart WH; Geissmann-Ott C; Bogdanova A
    Clin Hemorheol Microcirc; 2011; 49(1-4):307-13. PubMed ID: 22214702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of hydroxyethyl starch on the rheological properties of human erythrocyte suspensions.
    Corry WD; Jackson LJ; Seaman GV
    Biorheology; 1981; 18(3-6):517-29. PubMed ID: 6173080
    [No Abstract]   [Full Text] [Related]  

  • 10. Rheology and ultrasound scattering from aggregated red cell suspensions in shear flow.
    Haider L; Snabre P; Boynard M
    Biophys J; 2004 Oct; 87(4):2322-34. PubMed ID: 15454433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action of hydroxyethyl starch on the flow properties of human erythrocyte suspensions.
    Corry WD; Jackson LJ; Seaman GV
    Biorheology; 1983; 20(5):705-17. PubMed ID: 6203575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of electric field on erythrocyte sedimentation rate. VI--dependence of electric field pattern].
    Xie L; Long M; Liu Y; Wang H; Song G; Wu Z; Wu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Sep; 14(3):237-42. PubMed ID: 11326840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Aggregation on Blood Sedimentation and Conductivity.
    Zhbanov A; Yang S
    PLoS One; 2015; 10(6):e0129337. PubMed ID: 26047511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of erythrocyte aggregation mechanism in presence of dextran and magnetic field by ultrasound scattering in blood.
    Swarnamani S; Singh M
    Biorheology; 1989; 26(4):847-62. PubMed ID: 2482091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythrocyte aggregation tendency and cellular properties in horse, human, and rat: a comparative study.
    Baskurt OK; Farley RA; Meiselman HJ
    Am J Physiol; 1997 Dec; 273(6):H2604-12. PubMed ID: 9435593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical transmission of blood: effect of erythrocyte aggregation.
    Shvartsman LD; Fine I
    IEEE Trans Biomed Eng; 2003 Aug; 50(8):1026-33. PubMed ID: 12892330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time course of electrical impedance during red blood cell aggregation in a glass tube: comparison with light transmittance.
    Baskurt OK; Uyuklu M; Meiselman HJ
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):969-78. PubMed ID: 19932990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic wave action upon the red blood cell agglutination in vitro.
    Doubrovski VA; Dvoretski KN
    Ultrasound Med Biol; 2000 May; 26(4):655-9. PubMed ID: 10856629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of long-range coherence in biological systems. I. The anomalous behaviour of human erythrocytes.
    Paul R; Chatterjee R; Tuszyński JA; Fritz OG
    J Theor Biol; 1983 Sep; 104(2):169-85. PubMed ID: 6645555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of critical shear stress with simultaneous measurement of electrical impedance, capacitance and light backscattering.
    Lee BK; Ko JY; Lim HJ; Nam JH; Shin S
    Clin Hemorheol Microcirc; 2012; 51(3):203-12. PubMed ID: 22240385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.