These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 18221244)

  • 1. Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology.
    Poot P; Lambers H
    New Phytol; 2008; 178(2):371-381. PubMed ID: 18221244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring rock fissures: does a specialized root morphology explain endemism on granite outcrops?
    Poot P; Hopper SD; van Diggelen JM
    Ann Bot; 2012 Jul; 110(2):291-300. PubMed ID: 22238122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil nitrogen, and not phosphorus, promotes cluster-root formation in a South American Proteaceae, Embothrium coccineum.
    Piper FI; Baeza G; Zúñiga-Feest A; Fajardo A
    Am J Bot; 2013 Dec; 100(12):2328-38. PubMed ID: 24249789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of the evolution of root water foraging strategies in dry and shallow soils.
    Renton M; Poot P
    Ann Bot; 2014 Sep; 114(4):763-78. PubMed ID: 24651371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-seeded Hakea species tolerate cotyledon loss better than large-seeded congeners.
    El-Amhir SH; Lamont BB; He T; Yan G
    Sci Rep; 2017 Jan; 7():41520. PubMed ID: 28139668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems.
    Lambers H; Bishop JG; Hopper SD; Laliberté E; Zúñiga-Feest A
    Ann Bot; 2012 Jul; 110(2):329-48. PubMed ID: 22700940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment.
    Nie Y; Chen H; Ding Y; Yang J; Wang K
    Front Plant Sci; 2017; 8():1651. PubMed ID: 29018464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of roots in adaptation of soil-indifferent Proteaceae to calcareous soils in south-western Australia.
    Kotula L; Clode PL; Ranathunge K; Lambers H
    J Exp Bot; 2021 Feb; 72(4):1490-1505. PubMed ID: 33170269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.
    Paz H; Pineda-García F; Pinzón-Pérez LF
    Oecologia; 2015 Oct; 179(2):551-61. PubMed ID: 26048351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-enhanced phosphorus toxicity in calcifuge and soil-indifferent Proteaceae along the Jurien Bay chronosequence.
    Hayes PE; Guilherme Pereira C; Clode PL; Lambers H
    New Phytol; 2019 Jan; 221(2):764-777. PubMed ID: 30267566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root of edaphically controlled Proteaceae turnover on the Agulhas Plain, South Africa: phosphate uptake regulation and growth.
    Shane MW; Cramer MD; Lambers H
    Plant Cell Environ; 2008 Dec; 31(12):1825-33. PubMed ID: 18811734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemic suppression of cluster-root formation and net P-uptake rates in Grevillea crithmifolia at elevated P supply: a proteacean with resistance for developing symptoms of 'P toxicity'.
    Shane MW; Lambers H
    J Exp Bot; 2006; 57(2):413-23. PubMed ID: 16356944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fire-mediated disruptive selection can explain the reseeder-resprouter dichotomy in Mediterranean-type vegetation.
    Altwegg R; De Klerk HM; Midgley GF
    Oecologia; 2015 Feb; 177(2):367-77. PubMed ID: 25348575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae).
    Shane MW; McCully ME; Lambers H
    J Exp Bot; 2004 May; 55(399):1033-44. PubMed ID: 15047760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of phenology, water availability and seed source on loblolly pine biomass partitioning and transpiration.
    Barnes AD
    Tree Physiol; 2002 Jul; 22(10):733-40. PubMed ID: 12091155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cluster root-bearing Proteaceae species show a competitive advantage over non-cluster root-bearing species.
    Fajardo A; Piper FI
    Ann Bot; 2019 Nov; 124(6):1121-1131. PubMed ID: 31332426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental climate warming enforces seed dormancy in South African Proteaceae but seedling drought resilience exceeds summer drought periods.
    Arnolds JL; Musil CF; Rebelo AG; Krüger GH
    Oecologia; 2015 Apr; 177(4):1103-16. PubMed ID: 25502439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of colonisation by an arbuscular mycorrhizal fungus on the growth of seedlings of Banksia ericifolia (Proteaceae).
    Pattinson GS; McGee PA
    Mycorrhiza; 2004 Apr; 14(2):119-25. PubMed ID: 12764605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms.
    Larson JE; Funk JL
    New Phytol; 2016 May; 210(3):827-38. PubMed ID: 26765506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of drought on cadmium accumulation in peanuts grown in a contaminated calcareous soil.
    Xia S; Wang X; Su G; Shi G
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18707-17. PubMed ID: 26194243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.